Title
Metabolite profiling and network analysis reveal coordinated changes in grapevine water stress response
Date Issued
20 November 2013
Access level
open access
Resource Type
journal article
Author(s)
Hochberg U.
Degu A.
Gendler T.
Nikoloski Z.
Rachmilevitch S.
Fait A.
Ben-Gurion University
Abstract
Background: Grapevine metabolism in response to water deficit was studied in two cultivars, Shiraz and Cabernet Sauvignon, which were shown to have different hydraulic behaviors (Hochberg et al. Physiol. Plant. 147:443-453, 2012).Results: Progressive water deficit was found to effect changes in leaf water potentials accompanied by metabolic changes. In both cultivars, but more intensively in Shiraz than Cabernet Sauvignon, water deficit caused a shift to higher osmolality and lower C/N ratios, the latter of which was also reflected in marked increases in amino acids, e.g., Pro, Val, Leu, Thr and Trp, reductions of most organic acids, and changes in the phenylpropanoid pathway. PCA analysis showed that changes in primary metabolism were mostly associated with water stress, while diversification of specialized metabolism was mostly linked to the cultivars. In the phloem sap, drought was characterized by higher ABA concentration and major changes in benzoate levels coinciding with lower stomatal conductance and suberinization of vascular bundles. Enhanced suberin biosynthesis in Shiraz was reflected by the higher abundance of sap hydroxybenzoate derivatives. Correlation-based network analysis revealed that compared to Cabernet Sauvignon, Shiraz had considerably larger and highly coordinated stress-related changes, reflected in its increased metabolic network connectivity under stress. Network analysis also highlighted the structural role of major stress related metabolites, e.g., Pro, quercetin and ascorbate, which drastically altered their connectedness in the Shiraz network under water deficit.Conclusions: Taken together, the results showed that Vitis vinifera cultivars possess a common metabolic response to water deficit. Central metabolism, and specifically N metabolism, plays a significant role in stress response in vine. At the cultivar level, Cabernet Sauvignon was characterized by milder metabolic perturbations, likely due to a tighter regulation of stomata upon stress induction. Network analysis was successfully implemented to characterize plant stress molecular response and to identify metabolites with a significant structural and biological role in vine stress response. © 2013 Hochberg et al.; licensee BioMed Central Ltd.
Volume
13
Issue
1
Language
English
OCDE Knowledge area
Bioquímica, Biología molecular Ciencias de las plantas, Botánica
Scopus EID
2-s2.0-84887803648
PubMed ID
Source
BMC Plant Biology
ISSN of the container
14712229
Sponsor(s)
The work was done with the support of the Israel Ministry of Agriculture, grant no. 857-0614-09, and it was funded in part by Research Grant no. IS-4325-10 from BARD the United States - Israel Binational Agricultural Research and Development Fund. AD and UH were sponsored by the Ministry of Agriculture and BARD grants and by the Kreitman School of Advanced Graduate Studies, Ben-Gurion University of the Negev.
Sources of information: Directorio de Producción Científica Scopus