Title
Designing Meyer wavelet neural networks for the three-species food chain model
Date Issued
01 January 2023
Access level
open access
Resource Type
journal article
Author(s)
United Arab Emirates University
Publisher(s)
American Institute of Mathematical Sciences
Abstract
The current research work is related to present the numerical solutions of three-species food chain model (TS-FCM) by exploiting the strength of Meyer wavelet neural networks (MWNNs) along with the global and local search competencies. The particle swarm optimization technique works as a global operator, while the sequential quadratic programming scheme is applied as a local operator for the TS-FCM. The nonlinear TS-FCM is dependent upon three categories, called consistent of prey populations, specialist predator and top predator. The optimization of an error-based fitness function is presented by using the hybrid computing efficiency of the global and local search schemes, which is designed through the differential form of the designed ordinary differential model and its initial conditions. The proposed results of the TS-FCM are calculated through the stochastic numerical techniques and further comparison is performed by the Adams method to check the exactness of the scheme. The absolute error in good ranges is performed, which shows the competency of the proposed solver. Moreover, different statistical procedures have also been used to check the reliability of the proposed stochastic procedure along with forty numbers of independent trials and 10 numbers of neurons.
Start page
61
End page
75
Volume
8
Issue
1
Language
English
OCDE Knowledge area
Estadísticas, Probabilidad
Subjects
Scopus EID
2-s2.0-85138637370
Source
AIMS Mathematics
ISSN of the container
24736988
Sponsor(s)
The research is partially supported by Chiang Mai University. This research received funding support from the NSRF via the Program Management Unit for Human Resources and Institutional Development, Research and Innovation (Grant number B05F650018).
Sources of information:
Directorio de Producción Científica
Scopus