Title
Efficiency in Human Actions Recognition in Video Surveillance Using 3D CNN and DenseNet
Date Issued
01 January 2022
Access level
metadata only access
Resource Type
conference paper
Publisher(s)
Springer Science and Business Media Deutschland GmbH
Abstract
The human actions recognition in video is a topic of growing interest in the scientific community in computing, due to its application in real problems and different domains such as video surveillance, medicine, psychiatry, among others, and on the other hand, due to the overcrowding of video capture devices all over the planet. Processing video to extract characteristics and subsequent classification or recognition is a complex task, as it involves processing data in a spatial dimension (video dimensions) and a temporal dimension, causing the input data to increase abundantly and become in a challenging task. There are two approaches to the recognition of human actions on video; handcrafted approaches based on optical flow and approaches based on Deep Learning, the latter has achieved many achievements in terms of accuracy; however, it has the problem of high computational cost, making its application almost impossible in specific domains, much less in a real-time scenario. In this way, we propose an architecture based on Deep Learning, for human actions recognition in video, oriented to the domain of video surveillance and in a real-time scenario; For this, the proposal is based on an architecture that combines 3D CNN and DenseNet techniques. The results show that the proposal is efficient and can be used in the domain of real-time video surveillance. Likewise, general representations are proposed referring to the resolution and minimum frames per second that guarantee recognition.
Start page
342
End page
355
Volume
438 LNNS
Language
English
OCDE Knowledge area
Ingeniería médica
Bioinformática
Psicología
Subjects
Scopus EID
2-s2.0-85127121016
ISBN
9783030980115
Source
Lecture Notes in Networks and Systems
Resource of which it is part
Lecture Notes in Networks and Systems
ISSN of the container
23673370
ISBN of the container
9783030980115
Conference
Future of Information and Communication Conference, FICC 2022 virtual, Online 3 March 2022 through 4 March 2022
Sources of information:
Directorio de Producción Científica
Scopus