Title
Spectral gap and logarithmic sobolev inequality for unbounded conservative spin systems
Date Issued
19 August 2002
Access level
metadata only access
Resource Type
journal article
Author(s)
Landim C.
Yau H.T.
Estrada Dona Castorina
Abstract
We consider reversible, conservative Ginzburg-Landau processes, whose potential are bounded perturbations of the Gaussian potential, evolving on a d-dimensional cube of length L. Following the martingale approach introduced in (S.L. Lu, H.T. Yau, Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics, Comm. Math. Phys. 156 (1993) 433-499), we prove in all dimensions that the spectral gap of the generator and the logarithmic Sobolev constant are of order L-2. © 2002 Éditions scientifiques et médicales Elsevier SAS.
Start page
739
End page
777
Volume
38
Issue
5
Language
English
OCDE Knowledge area
Estadísticas, Probabilidad
Scopus EID
2-s2.0-0036334311
Source
Annales de l'institut Henri Poincare (B) Probability and Statistics
ISSN of the container
02460203
Sponsor(s)
C.L. was partially supported by CNPq grant 300358/93-8, FAPERJ and PRONEX 41.96.0923.00. H.T. Yau is partially supported by US National Science Foundation grant 9703752.
Sources of information: Directorio de Producción Científica Scopus