Title
Quantile regression for censored mixed-effects models with applications to HIV studies
Date Issued
01 January 2015
Access level
open access
Resource Type
journal article
Author(s)
University of Rio de Janeiro
Publisher(s)
International Press of Boston, Inc
Abstract
HIV RNA viral load measures are often subjected to some upper and lower detection limits depending on the quantification assays. Hence, the responses are either left or right censored. Linear/nonlinear mixed-effects models, with slight modifications to accommodate censoring, are routinely used to analyze this type of data. Usually, the inference procedures are based on normality (or elliptical distribution) assumptions for the random terms. However, those analyses might not provide robust inference when the distribution assumptions are questionable. In this paper, we discuss a fully Bayesian quantile regression inference using Markov Chain Monte Carlo (MCMC) methods for longitudinal data models with random effects and censored responses. Compared to the conventional mean regression approach, quantile regression can characterize the entire conditional distribution of the outcome variable, and is more robust to outliers and misspecification of the error distribution. Under the assumption that the error term follows an asymmetric Laplace distribution, we develop a hierarchical Bayesian model and obtain the posterior distribution of unknown parameters at the pth level, with the median regression (p = 0.5) as a special case. The proposed procedures are illustrated with two HIV AIDS studies on viral loads that were initially analyzed using the typical normal (censored) mean regression mixed-effects models, as well as a simulation study.
Start page
203
End page
215
Volume
8
Issue
2
Language
English
OCDE Knowledge area
Inmunología
Enfermedades infecciosas
Subjects
Scopus EID
2-s2.0-84924404239
Source
Statistics and its Interface
ISSN of the container
19387989
Sponsor(s)
National Institutes of Health
Sources of information:
Directorio de Producción Científica
Scopus