Title
Solving the Manufacturing Cell Design Problem Using Human Behavior-Based Algorithm Supported by Autonomous Search
Date Issued
01 January 2019
Access level
open access
Resource Type
journal article
Author(s)
Crawford B.
Gonzalez F.
Vega E.
Castro C.
Paredes F.
Pontificia Universidad Católica de Valparaíso
Publisher(s)
Institute of Electrical and Electronics Engineers Inc.
Abstract
The manufacturing Cell Design Problem (MCDP) is a classical optimization problem that finds application in lines of manufacture. The problem consist in distributing machines in cells, where the parts processed by each machine travels in the production process in such a way that productivity is improved. To solve the MCDP we employ a novel metaheuristic, which is inspired by actions, attitudes, and conducts that people normally have in life, named Human behavior-based optimization (HBBO). An individual try to evolve in life by trying his best in order to be a better human being with a brilliant future, successful at life, and be an example for others. We couple the HBBO with Autonomous Search (AS), which allows the modification of internal components of our approach when exposed to changing external forces and opportunities. We compare our HBBO-AS with the classic HBBO and an implementation using IRace, which is a software package that allows us to automatize the configuration of an algorithm through automatic configuration procedures. Additionally, in order to test the competitiveness of our results, we compare with other algorithms proved to perform well solving the MCDP. We illustrate experimental results, where the proposed approach is able to obtain interesting performance and robustness in the 125 well-known instances of the MCDP.
Start page
132228
End page
132239
Volume
7
Language
English
OCDE Knowledge area
Psicología (incluye relaciones hombre-máquina) Ingeniería de la construcción Ingeniería arquitectónica
Scopus EID
2-s2.0-85077970686
Source
IEEE Access
ISSN of the container
21693536
Sponsor(s)
The work of R. Soto was supported by the CONICYT/FONDECYT/REGULAR under Grant 1190129. The work of B. Crawford was supported by the CONICYT/FONDECYT/REGULAR under Grant 1171243. The work of E. Vega was supported by the Postgraduate Grant Pontificia Universidad Católica de Valparaso, Chile, 2019.
Sources of information: Directorio de Producción Científica Scopus