Title
Plant cell calcium-rich environment enhances thermostability of recombinantly produced α-amylase from the hyperthermophilic bacterium Thermotoga maritime
Date Issued
01 December 2009
Access level
metadata only access
Resource Type
journal article
Author(s)
North Carolina State University
Abstract
In the industrial processing of starch for sugar syrup and ethanol production, a liquefaction step is involved where starch is initially solubilized at high temperature and partially hydrolyzed with a thermostable and thermoactive α-amylase. Most amylases require calcium as a cofactor for their activity and stability, therefore calcium, along with the thermostable enzyme, are typically added to the starch mixture during enzymatic liquefaction, thereby increasing process costs. An attractive alternative would be to produce the enzyme directly in the tissue to be treated. In a proof of concept study, tobacco cell cultures were used as model system to test in planta production of a hyperthermophilic α-amylase from Thermotoga maritima. While comparable biochemical properties to recombinant production in Escherichia coli were observed, thermostability of the plant-produced α-amylase benefited significantly from high intrinsic calcium levels in the tobacco cells. The plant-made enzyme retained 85% of its initial activity after 3 h incubation at 100°C, whereas the E. coli-produced enzyme was completely inactivated after 30 min under the same conditions. The addition of Ca2+ or plant cell extracts from tobacco and sweetpotato to the E. coli-produced enzyme resulted in a similar stabilization, demonstrating the importance of a calcium-rich environment for thermostability, as well as the advantage of producing this enzyme directly in plant cells where calcium is readily available. © 2009 Wiley Periodicals, Inc.
Start page
947
End page
956
Volume
104
Issue
5
Language
English
OCDE Knowledge area
Bioquímica, Biología molecular
Alimentos y bebidas
Subjects
Scopus EID
2-s2.0-70350532559
PubMed ID
Source
Biotechnology and Bioengineering
ISSN of the container
00063592, 10970290
Sources of information:
Directorio de Producción Científica
Scopus