Title
The effect of land-use changes on the hydrological behaviour of Histic Andosols in south Ecuador
Date Issued
30 December 2005
Access level
open access
Resource Type
journal article
Author(s)
Universidad de Cuenca
Publisher(s)
Wiley-Blackwell
Abstract
The south Ecuadorian Andean mountain belt between 3500 and 4500 m altitude is covered by a highly endemic and fragile ecosystem called páramo. The Histic Andosols covering this region have highly developed hydric properties and exert a key function in the hydrological regulation of the páramo ecosystem. Unlike most Andosols, their extreme water retention capacity is not due to the presence of typical minerals such as allophane or imogolite. Although these minerals are virtually absent, the large organic carbon content, due to organometallic complexation, gives rise to similar properties. The water content at 1500 kPa can exceed 2000 g kg-1, and the high hydraulic conductivity at saturation (about 15 mm h-1) drops sharply when low suction is applied. The three methods applied, i.e. the inverted auger hole, the tension infiltrometer and the constant-head permeameter method, give very similar results. The páramo is characterized by a slow hydrological response and a good water regulation, caused by the combination of a high water storage capacity and high conductivity. The wide pore size distribution of the organometallic complexes results in a water retention curve that differs significantly from the classic Mualem-Van Genuchten description, but can better be described with a simple linear or semilogarithmic model. The soils investigated are very prone to irreversible structural changes caused by land-use changes. The conversion of natural land for cultivation has a large impact on the hydrological function of the region. The water storage capacity increases by 5 to 30%, and the hydraulic conductivity is 31% higher in cultivated catchments. These changes are related to a larger peak flow, a smaller base flow and generally a smaller discharge buffering capacity, despite the higher storage capacity. Copyright © 2005 John Wiley & Sons, Ltd.
Start page
3985
End page
3997
Volume
19
Issue
20
Language
English
OCDE Knowledge area
Geociencias, Multidisciplinar
Oceanografía, Hidrología, Recursos hídricos
Subjects
DOI
Scopus EID
2-s2.0-30744445415
Source
Hydrological Processes
ISSN of the container
10991085
Sources of information:
Directorio de Producción Científica
Scopus