Title
Automatic detection of pneumonia analyzing ultrasound digital images
Date Issued
07 June 2017
Access level
open access
Resource Type
conference paper
Author(s)
Barrientos R.
Oberhelman R.
Checkley W.
Johns Hopkins University
Publisher(s)
Institute of Electrical and Electronics Engineers Inc.
Abstract
Pneumonia is one of the major causes of child mortality. Unfortunately, in developing countries there is a lack of infrastructure and medical experts in rural areas to provide the required diagnostics opportunely. Lung ultrasound echography has proved to be an important tool to detect lung consolidates as evidence of pneumonia. This paper presents a method for automatic diagnostics of pneumonia using ultrasound imaging of the lungs. The approach presented here is based on the analysis of patterns present in rectangular segments from the ultrasound digital images. Specific features from the characteristic vectors were obtained and classified with standard neural networks. A training and testing set of positive and negative vectors were compiled. Vectors obtained from a single patient were included only in the testing or in the training set, but never in both. Our approach was able to correctly classify vectors with evidence of pneumonia, with 91.5% sensitivity and 100% specificity.
Language
English
OCDE Knowledge area
Enfermedades infecciosas
Sistema respiratorio
Subjects
Scopus EID
2-s2.0-85021415999
Resource of which it is part
2016 IEEE 36th Central American and Panama Convention, CONCAPAN 2016
ISBN of the container
978-146739578-6
Conference
36th IEEE Central American and Panama Convention, CONCAPAN 2016
Sponsor(s)
This work was supported by NIH-1D43TW009349-03, Grand Challenge Canada 0542-01-10, Grand Challenge Canada 0688-01-10, CONCYTECFONDECYT 054-2014, PUCP-DGI 70242-2149, and 01-2013-FONDECYT.
Sources of information:
Directorio de Producción Científica
Scopus