Title
Double Nanowires for Hybrid Quantum Devices
Date Issued
23 February 2022
Access level
open access
Resource Type
journal article
Author(s)
Kanne T.
Olsteins D.
Marnauza M.
Vekris A.
Loric̀ S.
Schlosser R.D.
Ross D.
Csonka S.
Grove-Rasmussen K.
Nygård J.
University of Copenhagen
Publisher(s)
John Wiley and Sons Inc
Abstract
Parallel 1D semiconductor channels connected by a superconducting strip constitute the core platform in several recent quantum device proposals that rely, for example, on Andreev processes or topological effects. In order to realize these proposals, the actual material systems must have high crystalline purity, and the coupling between the different elements should be controllable in terms of their interfaces and geometry. A strategy for synthesizing double InAs nanowires by the vapor-liquid-solid mechanism using III-V molecular beam epitaxy is presented. A superconducting layer is deposited onto nanowires without breaking the vacuum, ensuring pristine interfaces between the superconductor and the two semiconductor nanowires. The method allows for a high yield of merged as well as separate parallel nanowires with full or half-shell superconductor coatings. Their utility in complex quantum devices by electron transport measurements is demonstrated.
Volume
32
Issue
9
Number
2107926
Language
English
OCDE Knowledge area
Nano-materiales
Física de la materia condensada
Subjects
Scopus EID
2-s2.0-85119479939
Source
Advanced Functional Materials
ISSN of the container
1616301X
Sponsor(s)
This work was funded by the European Union's Horizon 2020 research and innovation programme QuantERA project no. 127900 (SuperTOP) and FETOpen grant no. 828948 (AndQC), the Carlsberg Foundation, the Niels Bohr Institute, the Villum Foundation project no. 25310, and the Ministry of Innovation and Technology and the NKFIH within the Quantum Information National Laboratory of Hungary and by the Quantum Technology National Excellence Program (Project Nr. 2017‐1.2.1‐NKP‐2017‐ 00001), NKP‐20‐5 New National Excellence Program. The Center for Quantum Devices is supported by the Danish National Research Foundation. J.C.E.S. acknowledges funding from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska‐Curie grant agreement No. 832645. The authors thank M. Aagesen, M. Burello, I. Nielsen, J. Paaske, G. Steffensen, M. Wauters, C.B. Sørensen, D. Laroche, D. Kjaer, O. Kurtossy, Z. Scherubl, C. Schrade, J. Sestoft, and P. Makk for assistance and discussions.
Villum Fonden 25310
H2020 Marie Skłodowska-Curie Actions MSCA
European Commission 127900 EC
Danmarks Grundforskningsfond DNRF
Carlsbergfondet
Nemzeti Kutatási Fejlesztési és Innovációs Hivatal NKFIH
Innovációs és Technológiai Minisztérium
Sources of information:
Directorio de Producción Científica
Scopus