Title
Hybrid FE/ANN and LPR approach for the inverse identification of material parameters from cutting tests
Date Issued
01 April 2011
Access level
open access
Resource Type
journal article
Author(s)
Munoz-Sánchez A.
Soldani X.
Miguélez M.
Universidad Carlos III de Madrid
Abstract
Accuracy of numerical models based in finite elements (FE), extensively used for simulation of cutting processes, depends strongly on the identification of proper material parameters. Experimental identification of the constitutive law parameters for simulation of cutting processes involves unsolved problems such as the complex testing techniques or the difficulty to reproduce the stress triaxiality state during cutting. This work proposes a methodology for the inverse identification of the material parameters from cutting test. Two hybrid approaches are compared. One of them based on FE and artificial neural networks (ANN). The other one based on FE and local polynomial regression (LPR). Firstly, a FE model is validated with experimental data. Then, ANN and LPR are trained with FE simulations. Finally, the estimated ANN and LPR models are used for the inverse identification of material parameters. This identification is solved as an optimization problem. The FE/LPR approach shows good performance, outperforming the FE/ANN approach. © Springer-Verlag London Limited 2010.
Start page
21
End page
33
Volume
54
Issue
April 1
Language
English
OCDE Knowledge area
Ingeniería mecánica
Scopus EID
2-s2.0-79955670893
Source
International Journal of Advanced Manufacturing Technology
ISSN of the container
14333015
Sources of information: Directorio de Producción Científica Scopus