Title
Recurrent Radial Basis Function (RRBF) and its application to (non-linear) system prognosis
Other title
Réseaux de neurones récurrents à fonctions de base radiales: RRFR - Application au pronostic
Date Issued
01 January 2002
Access level
metadata only access
Resource Type
journal article
Author(s)
Zemouri R.
Zerhouni N.
Laboratoire d'Automatique de Besancon
Publisher(s)
Editions Hermes
Abstract
This paper introduces a Recurrent Radial Basis Function network (RRBF) for non-linear system prognosis. The training process is divided in two stages. First, the parameters of the RRBF are determined by the unsupervised k-means algorithm. The ineffectiveness of this algorithm is improved by the FuzzyMinMax technique. In the second stage, a multivariable linear regression supervised learning technique is used to determine the weights of the connections between the hidden and output layer. We test the RRBF on the Box and Jenkins furnace database. This application shows that the RRBF is able to predict the evolution of a non-linear system. The performances of the RRBF are compared with those of the TDRBF. The RRBF gives better results for long run predictions. The FuzzyMinMax technique makes the K-means more stable.
Start page
307
End page
338
Volume
16
Issue
3
Language
French
OCDE Knowledge area
Ingeniería de sistemas y comunicaciones
Scopus EID
2-s2.0-0142146523
Source
Revue d'Intelligence Artificielle
ISSN of the container
0992499X
Sources of information: Directorio de Producción Científica Scopus