Title
Potential Short-Term Memory Induction as a Promising Method for Increasing Drought Tolerance in Sweetpotato Crop Wild Relatives [Ipomoea series Batatas (Choisy) D. F. Austin]
Date Issued
03 September 2020
Access level
open access
Resource Type
journal article
Author(s)
Publisher(s)
Frontiers Media S.A.
Abstract
Crop wild relatives of sweetpotato [Ipomoea series Batatas (Choisy) D. F. Austin] are a group of species with potential for use in crop improvement programs seeking to breed for drought tolerance. Stress memory in this group could enhance these species’ physiological response to drought, though no studies have yet been conducted in this area. In this pot experiment, drought tolerance, determined using secondary traits, was tested in 59 sweetpotato crop wild relative accessions using potential short-term memory induction. For this purpose, accessions were subjected to two treatments, i) non-priming: full irrigation (up to field capacity, 0.32 w/w) from transplanting to harvest and ii) priming: full irrigation from transplanting to flowering onset (FO) followed by a priming process from FO to harvest. The priming process consisted of three water restriction periods of increasing length (8, 11, and 14 days) followed each by a recovery period of 14 days with full irrigation. Potential stress memory induction was calculated for each accession based on ecophysiological indicators such as senescence, foliar area, leaf-minus-air temperature, and leaf 13C discrimination. Based on total biomass production, resilience and production capacity were calculated per accession to evaluate drought tolerance. Increase in foliar area, efficient leaf thermoregulation, improvement of leaf photosynthetic performance, and delayed senescence were identified in 23.7, 28.8, 50.8, and 81.4% of the total number of accessions, respectively. It was observed that under a severe drought scenario, a resilient response included more long-lived green leaf area while a productive response was related to optimized leaf thermoregulation and gas exchange. Our preliminary results suggest that I. triloba and I. trifida have the potential to improve sweetpotato resilience in dry environments and should be included in introgression breeding programs of this crop. Furthermore, I. splendor-sylvae, I. ramosissima, I. tiliacea, and wild I. batatas were the most productive species studied but given the genetic barriers to interspecific hybridization between these species and sweetpotato, we suggest that further genetic and metabolic studies be conducted on them. Finally, this study proposes a promising method for improving drought tolerance based on potential stress-memory induction, which is applicable both for wild species and crops.
Volume
11
Language
English
OCDE Knowledge area
Agricultura
Subjects
Scopus EID
2-s2.0-85091099406
Source
Frontiers in Plant Science
ISSN of the container
1664462X
Sponsor(s)
The authors would like to thank Dr. Craig Yencho, North Carolina State University (NCSU), who managed the Sweetpotato CWR project in collaboration with the International Potato Center (CIP). We also thank Carlos Flores, César Fernández, Genoveva Rossel, and Cecilia Silva for their technical support and assistance.
This investigation was led by North Carolina State University (NCSU), who managed the Sweetpotato CWR project in collaboration with the International Potato Center (CIP) with support from the CGIAR Research Program on Roots, Tubers, and Bananas (RTB). The study was part of the initiative “Adapting Agriculture to Climate Change: Collecting, Protecting and Preparing Crop Wild Relatives” which is supported by the Government of Norway. The initiative is managed by the Global Crop Diversity Trust with the Millennium Seed Bank of the Royal Botanic Gardens, Kew, UK, and implemented in partnership with national and international genebanks and plant breeding institutes around the world. For further information, see Dempewolf et al. (2014), and http://www.cwrdiversity.org/.
Sources of information:
Directorio de Producción Científica
Scopus