Title
On the local existence for a weakly parabolic system in Lebesgue spaces
Date Issued
05 March 2020
Access level
metadata only access
Resource Type
journal article
Author(s)
Universidad del Bío-Bío
Universidade Federal de Pernambuco - UFPE
Publisher(s)
Academic Press Inc.
Abstract
We consider the parabolic system ut−aΔu=f(v),vt−bΔv=g(u) in Ω×(0,T), where a,b>0, f,g:[0,∞)→[0,∞) are non-decreasing continuous functions and either Ω is a bounded domain with smooth boundary ∂Ω or the whole space RN. We characterize the functions f and g so that the system has a local solution for every initial data (u0,v0)∈Lr(Ω)×Ls(Ω), u0,v0≥0, r,s∈[1,∞).
Start page
3129
End page
3151
Volume
268
Issue
6
Language
English
OCDE Knowledge area
Física de partículas, Campos de la Física
Matemáticas aplicadas
Subjects
Scopus EID
2-s2.0-85072749093
Source
Journal of Differential Equations
ISSN of the container
00220396
Sponsor(s)
O. Guzmán-Rea was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico CNPq/Brazil, 140594/2016-7.
Sources of information:
Directorio de Producción Científica
Scopus