Title
On the local existence for a weakly parabolic system in Lebesgue spaces
Date Issued
05 March 2020
Access level
metadata only access
Resource Type
journal article
Publisher(s)
Academic Press Inc.
Abstract
We consider the parabolic system ut−aΔu=f(v),vt−bΔv=g(u) in Ω×(0,T), where a,b>0, f,g:[0,∞)→[0,∞) are non-decreasing continuous functions and either Ω is a bounded domain with smooth boundary ∂Ω or the whole space RN. We characterize the functions f and g so that the system has a local solution for every initial data (u0,v0)∈Lr(Ω)×Ls(Ω), u0,v0≥0, r,s∈[1,∞).
Start page
3129
End page
3151
Volume
268
Issue
6
Language
English
OCDE Knowledge area
Física de partículas, Campos de la Física Matemáticas aplicadas
Scopus EID
2-s2.0-85072749093
Source
Journal of Differential Equations
ISSN of the container
00220396
Sponsor(s)
O. Guzmán-Rea was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico CNPq/Brazil, 140594/2016-7.
Sources of information: Directorio de Producción Científica Scopus