Title
DDoS attack detection mechanism in the application layer using user features
Date Issued
2018
Access level
restricted access
Resource Type
conference paper
Author(s)
Bravo S.
Publisher(s)
Institute of Electrical and Electronics Engineers Inc.
Abstract
DDoS attacks are one of the most damaging computer aggressions of recent times. Attackers send large number of requests to saturate a victim machine and it stops providing its services to legitimate users. In general attacks are directed to the network layer and the application layer, the latter has been increasing due mainly to its easy execution and difficult detection. The present work proposes a low cost detection approach that uses the characteristics of the Web User for the detection of attacks. To do this, the features are extracted in real time using functions designed in PHP and JavaScript. They are evaluated by an order 1 classifier to differentiate a real user from a DDoS attack. A real user is identified by making requests interacting with the computer system, while DDoS attacks are requests sent by robots to overload the system with indiscriminate requests. The tests were executed on a computer system using requests from real users and attacks using the LOIC, OWASP and GoldenEye tools. The results show that the proposed method has a detection efficiency of 100%, and that the characteristics of the web user allow to differentiate between a real user and a robot. © 2018 IEEE.
Start page
97
End page
100
Number
11
Language
English
Subjects
Scopus EID
2-s2.0-85048376703
Source
2018 International Conference on Information and Computer Technologies, ICICT 2018
ISBN of the container
9781538653845
Conference
2018 International Conference on Information and Computer Technologies, ICICT 2018
Sponsor(s)
ACKNOWLEDGMENT The authors thank the National Council of Science, Technology and Technological Innovation (CONCYTEC) - Peru and Technical University of Cotopaxi for the partial funding of this work and Professor Angel H. Moreno for their contributions to this work.
Sources of information:
Directorio de Producción Científica