Title
Artificial Neural Network Based System Identification of an Irrigation Main Canal Pool
Date Issued
01 January 2017
Access level
metadata only access
Resource Type
journal article
Author(s)
Hernandez Lopez Y.
Feliu Batlle V.
Universidad Tecnológica de la Habana
Publisher(s)
IEEE Computer Society
Abstract
In this paper by applying system identification tools a neural network model of an irrigation main canal pool is obtained. The complete system identification procedure, from experimental design to model validation, taking into account prior physical information, is developed. It is established that a nonlinear model with NARX structure can adequately describe the dynamic behavior of an irrigation main canal pool. The model validation results show that the model obtained reproduces with high accuracy the observed data and therefore it can be applied in the design of nonlinear control systems and/or for prediction purposes.
Start page
1595
End page
1600
Volume
15
Issue
9
Language
English
OCDE Knowledge area
Ingeniería, Tecnología Ingeniería industrial
Scopus EID
2-s2.0-85028732173
Source
IEEE Latin America Transactions
ISSN of the container
15480992
Source funding
Junta de Comunidades de Castilla-La Mancha
Sponsor(s)
Los próximos objetivos de esta investigación consisten en modelar los restantes tramos del canal Imperial de Aragón y utilizar dichos modelos en el diseño e implementación práctica de un sistema integral de control inteligente de la distribución del agua en todo el canal 堀 AGRADECIMIENTOS Este trabajo ha sido realizado con financiación de la Consejería de Educación, Cultura y Deportes de la Junta de Comunidades de Castilla-La Mancha y de la European Social Fund (Proyecto POII-2014-014-P).
Sources of information: Directorio de Producción Científica Scopus