Title
Predictive Neural Networks Model for Detection of Water Quality for Human Consumption
Date Issued
22 September 2021
Access level
metadata only access
Resource Type
conference paper
Author(s)
Publisher(s)
Institute of Electrical and Electronics Engineers (IEEE)
Abstract
Water is an important element that is related to the human being because drinking water is a necessary element for health, also drinking water is considered as an element that also participates in the economy of a society, since it has a defined and industrialized process. Due to the presence of drinking water in different aspects of society, it is important to carry out research that contributes to this topic. The present research work is focused on a predictive analysis using a neural network model, which will allow us to predict and detect whether a given body of water is suitable for human consumption. The proposed model is based on an architecture that uses neural networks that was developed in the Python language, and a dataset obtained from the Kaggle web page was also used. This data set was used for training and validation. Within the preprocessing, the MinMax scaling method obtained from the Sklearn library was used. For the development of the model, the Keras library was used, which provided the necessary methods for the implementation of the seven dense layers that make up the neural network. At the end of the development, a model with an accuracy of approximately 70% was obtained. Finally, we invite for future research, to consider new architectures based on neural networks or other models based on other machine learning classification algorithms.
Start page
172
End page
176
Language
English
OCDE Knowledge area
Biología marina, Biología de agua dulce, Limnología
Robótica, Control automático
Ciencias del medio ambiente
Ingeniería de sistemas y comunicaciones
Subjects
Scopus EID
2-s2.0-85119261176
Resource of which it is part
Proceedings - 2021 IEEE 13th International Conference on Computational Intelligence and Communication Networks, CICN 2021
ISBN of the container
9781728176956
Conference
13th IEEE International Conference on Computational Intelligence and Communication Networks, CICN 2021 Lima22 September 2021 through 23 September 2021
Sources of information:
Directorio de Producción Científica
Scopus