Title
Characterization and salt response in recurrent halotolerant exiguobacteriumsp. SH31 isolated from sediments of salar de huasco, chilean altiplano
Date Issued
20 September 2018
Access level
open access
Resource Type
journal article
Author(s)
Remonsellez F.
Castro-Severyn J.
Pardo-Esté C.
Aguilar P.
Fortt J.
Salinas C.
Barahona S.
León J.
Fuentes B.
Hernández K.
Aguayo D.
Saavedra C.
Universidad de Chile
Publisher(s)
Universidad de Chile
Abstract
Poly-extremophiles microorganisms have the capacity to inhabit hostile environments and can survive several adverse conditions that include as variations in temperature, pH, and salinity, high levels UV light and atmospheric pressure, and even the presence of toxic compounds and the formation of reactive oxygen species (ROS). A halotolerant Exiguobacterium strain was isolated from Salar de Huasco (Chilean Altiplano), a well-known shallow lake area with variable salinity levels, little human intervention, and extreme environmental conditions, which makes it ideal for the study of resistant mechanisms and the evolution of adaptations. This bacterial genus has not been extensively studied, although its cosmopolitan location indicates that it has high levels of plasticity and adaptive capacity. However, to date, there are no studies regarding the tolerance and resistance to salinity and osmotic pressure. We set out to characterize the Exiguobacterium sp. SH31 strain and describe its phenotypical and genotypical response to osmotic stress. In this context, as a first step to characterize the response to the SH31 strain to salinity and to establish the bases for a molecular study, we proposed to compare its response under three salt conditions (0, 25, and 50 g/l NaCl). Using different physiology, genomic, and transcriptomic approaches, we determined that the bacterium is able to grow properly in a NaCl concentration of up to 50 g/l; however, the best growth rate was observed at 25 g/l. Although the presence of flagella is not affected by salinity, motility was diminished at 25 g/l NaCl and abolished at 50 g/l. Biofilm formation was induced proportionally with increases in salinity, which was expected. These phenotypic results correlated with the expression of related genes: fliG and fliS Motility); opuBA and putP (transport); glnA, proC, gltA, and gbsA (compatible solutes); ywqC, bdlA, luxS y pgaC (biofilm and stress response); and therefore, we conclude that this strain effectively modifies gene expression and physiology in a differential manner when faced with different concentrations of NaCl and these modifications aid survival.
Volume
9
Issue
SEP
Language
English
OCDE Knowledge area
Biología celular, Microbiología Investigación climática
Scopus EID
2-s2.0-85055106183
Source
Frontiers in Microbiology
Sponsor(s)
This research was sponsored by CONICYT (Comisión Nacional para la Investigación Científica y Tecnológica de Chile) grants: CPS was funded by CONICYT FONDECYT 1160315 and Universidad Andrés Bello Nucleo DI-3-17/N UNAB; FR was funded by CONICYT FONDECYT 11100414; BF was funded by CONICYT FONDECYT 11100207; JC-S, CP-E, and SB were funded by 2015 CONICYT National Doctoral Fellowship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Sources of information: Directorio de Producción Científica Scopus