Title
Artificial intelligence and innovation to optimize the tuberculosis diagnostic process
Other title
Inteligencia artificial e innovación para optimizar el proceso de diagnóstico de la tuberculosis
Date Issued
July 2020
Access level
open access
Resource Type
journal article
Author(s)
Brunette M.J.
Publisher(s)
Instituto Nacional de Salud
Abstract
Tuberculosis remains an urgent issue on the urban health agenda, especially in low-and middle-income countries. There is a need to develop and implement innovative and effective solutions in the tuberculosis diagnostic process. In this article, We describe the importance of artificial intelligence as a strategy to address tuberculosis control, particularly by providing timely diagnosis. Besides technological factors, the role of socio-technical, cultural and organizational factors is emphasized. The eRx tool involving deep learning algorithms and specifically the use of convolutional neural networks is presented as a case study. eRx is a promising artificial intelligence-based tool for the diagnosis of tuberculosis; which comprises a variety of innovative techniques involving remote X-ray analysis for suspected tuberculosis cases. In-novations based on artificial intelligence tools can optimize the diagnostic process for tuberculosis and other communicable diseases.
Start page
554
End page
558
Volume
37
Issue
3
Language
Spanish
OCDE Knowledge area
Otras ingenierías y tecnologías
Tecnología médica de laboratorio (análisis de muestras, tecnologías para el diagnóstico)
Políticas de salud, Servicios de salud
Sistema respiratorio
Salud pública, Salud ambiental
Subjects
Scopus EID
2-s2.0-85096311570
PubMed ID
Source
Revista Peruana de Medicina Experimental y Salud Publica
Resource of which it is part
Revista Peruana de Medicina Experimental y Salud Publica
ISSN of the container
17264634
Sponsor(s)
Fuentes de financiamiento: Este trabajo fue financiado parcialmen-te por el proyecto: «A sociotechnical systems approach to improve tuberculosis diagnostics in Peru» NIH/NIBIB 5R01EB021900-04.
Sources of information:
Directorio de Producción Científica
Scopus