Title
High-quality Voxel Reconstruction from Stereoscopic Images
Date Issued
01 January 2022
Access level
open access
Resource Type
journal article
Publisher(s)
Science and Information Organization
Abstract
Volumetric reconstruction from one or multiple RGB images has shown significant advances in recent years, but the approaches used so far do not take advantage of stereoscopic features such as distance blur, perspective disparity, textures, etc. that are useful to shape the object volumes. Our study is to evaluate a convolutional neural network architecture for reconstruction of 1283 voxel models from 960 pairs of stereoscopic images. The preliminary results show an 80% of coincidence with the original models in 2 categories using the Intersection over Union metric. These results indicate that good reconstructions can be made from a small dataset. This will reduce the time and memory usage for this task
Start page
646
End page
653
Volume
13
Issue
3
Language
English
OCDE Knowledge area
Ciencias de la información Bioinformática Ciencias de la computación
Scopus EID
2-s2.0-85129880384
Source
International Journal of Advanced Computer Science and Applications
ISSN of the container
2158107X
Sponsor(s)
We acknowledge the financial support of the ”Proyecto Concytec - Banco Mundial”, through its executing unit ”Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovaci ón Tecnológica (Fondecyt)”, for their research work entitled ”Reconstrucción y modelado 3D de las superficies de componentes y piezas de maquinaria pesada usada en Minería, con nivel de precisión milimétrica, para su aplicación en un nuevo proceso optimizado de manutención especializada”.The authors would like to thank EdwinRC (https://sketchfab.com/Edwin3D), noe-3d.at (https://sketchfab.com/www.noe-3d.at), and VIMUNE (https://sketchfab.com/vimune), for the fantastic models used in this study
Sources of information: Directorio de Producción Científica Scopus