Title
Pure Shift Nuclear Magnetic Resonance: a New Tool for Plant Metabolomics
Date Issued
31 July 2021
Access level
metadata only access
Resource Type
journal article
Publisher(s)
Journal of Visualized Experiments
Abstract
Nuclear Magnetic Resonance (NMR) is one of the most powerful tools used in metabolomics. It stands as a highly accurate and reproducible method that not only provides quantitative data but also permits structural identification of the metabolites present in complex mixtures. Metabolic profiling by 1H NMR has proven useful in the study of various types of plant scenarios, which include the evaluation of crop conditions, harvest and post- harvest treatments, metabolic phenotyping, metabolic pathways, gene regulation, identification of biomarkers, chemotaxonomy, quality control, denomination of origin, among others. However, signal overlapping of the large number of resonances with expanded J-coupling multiplicities complicates the spectra analysis and its interpretation, and represents a limitation for classical 1H NMR profiling. In the last decade, novel NMR broadband homonuclear decoupling techniques through which multiplet signals collapse into single resonance lines - commonly called Pure Shift methods - have been developed to overcome the spectra resolution problem inherent to 1H NMR classical spectra. Here a step-by-step protocol of the plant extract preparation and the procedure to record optimal Pure Shift PSYCHE and SAPPHIRE-PSYCHE spectra in three different plant matrices - Vanilla plant leaves, potato tubers (S. tuberosum), and Cape gooseberries (P. peruviana) - is presented. The effect of the gain in resolution in metabolic identification, correlation analysis and multivariate analyses, as compared against classical spectra, is discussed.
Issue
173
Language
English
OCDE Knowledge area
Bioquímica, Biología molecular
DOI
Scopus EID
2-s2.0-85127022846
PubMed ID
Source
Journal of visualized experiments : JoVE
Sponsor(s)
This study was funded by the Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica (CONCYTEC) -Programa Atracción de Investigadores Cienciactiva - Contract # 008-2017-FONDECYT.
Sources of information:
Directorio de Producción Científica
Scopus