Title
A Q-Learning Hyperheuristic Binarization Framework to Balance Exploration and Exploitation
Date Issued
01 January 2020
Access level
metadata only access
Resource Type
conference paper
Author(s)
Tapia D.
Crawford B.
Cisternas-Caneo F.
Lemus-Romani J.
Castillo M.
García J.
Palma W.
Paredes F.
Misra S.
Pontificia Universidad Católica de Valparaíso
Publisher(s)
Springer Science and Business Media Deutschland GmbH
Abstract
Many Metaheuristics solve optimization problems in the continuous domain, so it is necessary to apply binarization schemes to solve binary problems, this selection that is not trivial since it impacts the heart of the search strategy: its ability to explore. This paper proposes a Hyperheuristic Binarization Framework based on a Machine Learning technique of Reinforcement Learning to select the appropriate binarization strategy, which is applied in a Low Level Metaheuristic. The proposed implementation is composed of a High Level Metaheuristic, Ant Colony Optimization, using Q-Learning replacing the pheromone trace component. In the Low Level Metaheuristic, we use a Grey Wolf Optimizer to solve the binary problem with binarization scheme fixed by ants. This framework allowing a better balance between exploration and exploitation, and can be applied selecting others low level components.
Start page
14
End page
28
Volume
1277 CCIS
Language
English
OCDE Knowledge area
Ingeniería de sistemas y comunicaciones
Ingeniería eléctrica, Ingeniería electrónica
Subjects
Scopus EID
2-s2.0-85096411243
ISBN
9783030617011
Source
Communications in Computer and Information Science
Resource of which it is part
Communications in Computer and Information Science
ISSN of the container
18650929
ISBN of the container
978-303061701-1
Conference
3rd International Conference on Applied Informatics, ICAI 2020
Sponsor(s)
Comisión Nacional de Investigación Científica y Tecnológica - FONDECYT
Sources of information:
Directorio de Producción Científica
Scopus