Title
Process Mining and Automatic Process Discovery
Date Issued
24 January 2019
Access level
metadata only access
Resource Type
conference presentation
Author(s)
Publisher(s)
Institute of Electrical and Electronics Engineers Inc.
Abstract
Business Processes Modeling is essential for the management and execution of processes. However, when the execution of the processes differs from the pre-established models is necessary to review the traces and records of events to know these differences. One goal of process mining is to discover the real processes through the extraction of knowledge from the records of events available in the information systems. This paper describes a systematic literature review to identify the algorithms developed for automatic discovery of business processes. 20 articles that included algorithm proposals were identified and the results show that the algorithms provide similar models to the records of events when these events are clean without noise. In addition, it is observed that the most used technique to model the flows is Petri net.
Start page
41
End page
46
Language
Spanish
OCDE Knowledge area
Ciencias de la computación
Subjects
Scopus EID
2-s2.0-85062622811
ISBN
9781728101583
Source
Applications in Software Engineering - Proceedings of the 7th International Conference on Software Process Improvement, CIMPS 2018
Resource of which it is part
Applications in Software Engineering - Proceedings of the 7th International Conference on Software Process Improvement, CIMPS 2018
Sources of information:
Directorio de Producción Científica
Scopus