Title
Spaceflight-related suboptimal conditions can accentuate the altered gravity response of Drosophila transcriptome
Date Issued
01 October 2010
Access level
open access
Resource Type
journal article
Author(s)
Herranz R.
BengurÍa A.
LÓpez-Vidriero I.
Gasset G.
Javier Medina F.
Van Loon J.J.W.A.
Marco R.
Instituto de Investigaciones Biomédicas Alberto Sols (UAM-CSIC)
Abstract
Genome-wide transcriptional profiling shows that reducing gravity levels during Drosophila metamorphosis in the International Space Station (ISS) causes important alterations in gene expression: a large set of differentially expressed genes (DEGs) are observed compared to 1g controls. However, the preparation procedures for spaceflight and the nonideal environmental conditions on board the ISS subject the organisms to additional environmental stresses that demonstrably affect gene expression. Simulated microgravity experiments performed on the ground, under ideal conditions for the flies, using the random position machine (RPM), show much more subtle effects on gene expression. However, when the ground experiments are repeated under conditions designed to reproduce the additional environmental stresses imposed by spaceflight procedures, 79% of the DEGs detected in the ISS are reproduced by the RPM experiment. Gene ontology analysis of them shows they are genes that affect respiratory activity, developmental processes and stress-related changes. Here, we analyse the effects of microgravity on gene expression in relation to the environmental stresses imposed by spaceflight. Analysis using 'gene expression dynamics inspector' (GEDI) self-organizing maps reveals a subtle response of the transcriptome to microgravity. Remarkably, hypergravity simulation induces similar response of the transcriptome, but in the opposite direction, i.e. the genes promoted under microgravity are usually suppressed under hypergravity. These results suggest that the transcriptome is finely tuned to normal gravity and that microgravity, together with environmental constraints associated with space experiments, can have profound effects on gene expression. © 2010 Blackwell Publishing Ltd.
Start page
4255
End page
4264
Volume
19
Issue
19
Language
English
OCDE Knowledge area
Bioquímica, Biología molecular Genética, Herencia
Scopus EID
2-s2.0-77957226612
PubMed ID
Source
Molecular Ecology
ISSN of the container
1365294X
Sources of information: Directorio de Producción Científica Scopus