Title
Predicting mutation outcome from early stochastic variation in genetic interaction partners
Date Issued
08 December 2011
Access level
metadata only access
Resource Type
journal article
Author(s)
Casanueva M.O.
Lehner B.
Universitat Pompeu Fabra
Abstract
Many mutations, including those that cause disease, only have a detrimental effect in a subset of individuals. The reasons for this are usually unknown, but may include additional genetic variation and environmental risk factors. However, phenotypic discordance remains even in the absence of genetic variation, for example between monozygotic twins, and incomplete penetrance of mutations is frequent in isogenic model organisms in homogeneous environments. Here we propose a model for incomplete penetrance based on genetic interaction networks. Using Caenorhabditis elegans as a model system, we identify two compensation mechanisms that vary among individuals and influence mutation outcome. First, feedback induction of an ancestral gene duplicate differs across individuals, with high expression masking the effects of a mutation. This supports the hypothesis that redundancy is maintained in genomes to buffer stochastic developmental failure. Second, during normal embryonic development we find that there is substantial variation in the induction of molecular chaperones such as Hsp90 (DAF-21). Chaperones act as promiscuous buffers of genetic variation, and embryos with stronger induction of Hsp90 are less likely to be affected by an inherited mutation. Simultaneously quantifying the variation in these two independent responses allows the phenotypic outcome of a mutation to be more accurately predicted in individuals. Our model and methodology provide a framework for dissecting the causes of incomplete penetrance. Further, the results establish that inter-individual variation in both specific and more general buffering systems combine to determine the outcome inherited mutations in each individual. © 2011 Macmillan Publishers Limited. All rights reserved.
Start page
250
End page
253
Volume
480
Issue
7376
Language
English
OCDE Knowledge area
Bioinformática
Scopus EID
2-s2.0-83055180178
PubMed ID
Source
Nature
Resource of which it is part
Nature
ISSN of the container
00280836
Source funding
European Molecular Biology Organization
Sponsor(s)
Acknowledgements This work was funded by grants from the European Research Council, Institució Catalana de Recerca i Estudis Avançats, Ministerio de Ciencia e Innovación Plan Nacional BFU2008-00365, Agència de Gestió d’juts Universitaris i de Recerca, ERASysBio1, the European Molecular Biology Organization Young Investigator Programme, the EMBL-CRG Systems Biology Program, by a Formaciónde Personal Investigador–Ministerio de Ciencia e Innovación fellowship to A.B. and by a Beatriu de Pinós Fellowship to M.O.C. We thank I. Hope, V. Ambros and S. Kim for providing strains. Additional strains were obtained from the Caenorhabditis Genetics Center, which is funded by the National Institutes of Health National Center for Research Resources. We thank T. Zimmermann and R. García from the CRG Advanced Light Microscopy Unit for advice and assistance, J. Miwa and Y. Yamaguchi for 608F antibody, J. Semple for providing complementary DNA clones, A. Marchetti and R. García-Verdugo for technical assistance, J. Tischler and C. Kiel for advice on single-molecule fluorescence in situ hybridization and western blotting, respectively, and L. Serrano, M. Isalan and J. Semple for comments on the manuscript.
Sources of information: Directorio de Producción Científica Scopus