Title
Genetic Programming-Based Code Generation for Arduino
Date Issued
01 January 2020
Access level
open access
Resource Type
journal article
Publisher(s)
Science and Information Organization
Abstract
This article describes a methodology for writing the program for the Arduino board using an automatic generator of assembly language routines that works based on a cooperative coevolutionary multi-objective linear genetic programming algorithm. The methodology is described in an illustrative example that consists of the development of the program for a digital thermometer organized on a circuit formed by the Arduino Mega board, a text LCD module, and a temperature sensor. The automatic generation of a routine starts with an input-output table that can be created in a spreadsheet. The following routines have been automatically generated: initialization routine for the text LCD screen, routine for determining the temperature value, routine for converting natural binary code into unpacked two-digit BCD code, routine for displaying a symbol on the LCD screen. The application of this methodology requires basic knowledge of the assembly programming language for writing the main program and some initial configuration routines. With the application of this methodology in the illustrative example, 27% of the program lines were written manually, while the remaining 73% were generated automatically. The program, produced with the application of this methodology, preserves the advantage of assembly language programs of generating machine code much smaller than that generated by using the Arduino programming language.
Start page
538
End page
549
Volume
11
Issue
11
Language
English
OCDE Knowledge area
Ingeniería eléctrica, Ingeniería electrónica Ingeniería de sistemas y comunicaciones
Scopus EID
2-s2.0-85097557693
Source
International Journal of Advanced Computer Science and Applications
ISSN of the container
2158107X
Sources of information: Directorio de Producción Científica Scopus