Title
Managing natural noise in recommender systems
Date Issued
01 January 2016
Access level
open access
Resource Type
conference paper
Author(s)
University of Ciego de Ávila
Publisher(s)
Springer Verlag
Abstract
E-commerce customers demand quick and easy access to suitable products in large purchase spaces. To support and facilitate this purchasing process to users, recommender systems (RSs) help them to find out the information that best fits their preferences and needs in an overloaded search space. These systems require the elicitation of customers’ preferences. However, this elicitation process is not always precise either correct because of external factors such as human errors, uncertainty, human beings inherent inconsistency and so on. Such a problem in RSs is known as natural noise (NN) and can negatively bias recommendations, which leads to poor user’s experience. Different proposals have been presented to deal with natural noise in RSs. Several of them require additional interaction with customers. Others just remove noisy information. Recently, new NN approaches dealing with the ratings stored in the user/item rating matrix have raised to deal with NN in a better and simpler way. This contribution is devoted to provide a brief review of the latter approaches revising crisp and fuzzy approaches for dealing with NN in RSs. Eventually it points out as a future research the management of NN in other recommendation scenarios as group RSs.
Start page
3
End page
17
Volume
10071 LNCS
Language
English
OCDE Knowledge area
Ingeniería de sistemas y comunicaciones
Subjects
Scopus EID
2-s2.0-85005990055
ISSN of the container
03029743
ISBN of the container
978-331949000-7
Conference
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Sources of information:
Directorio de Producción Científica
Scopus