Title
Assessment of global ocular structure following spaceflight using a micro-computed tomography (Micro-ct) imaging method
Date Issued
01 October 2020
Access level
metadata only access
Resource Type
journal article
Author(s)
Loma Linda University
Publisher(s)
Journal of Visualized Experiments
Abstract
Reports show that prolonged exposure to a spaceflight environment produces morphologic and functional ophthalmic changes in astronauts during and after an International Space Station (ISS) mission. However, the underlying mechanisms of these spaceflight-induced changes are currently unknown. The purpose of the present study was to determine the impact of the spaceflight environment on ocular structures by evaluating the thickness of the mouse retina, the retinal pigment epithelium (RPE), the choroid and the sclera layer using micro-CT imaging. Ten-week-old C57BL/6 male mice were housed aboard the ISS for a 35-day mission and then returned to Earth alive for tissue analysis. For comparison, ground control (GC) mice on Earth were maintained in identical environmental conditions and hardware. Ocular tissue samples were collected for micro-CT analysis within 38(±4) hours after splashdown. The images of the cross-section of the retina, the RPE, the choroid, and the sclera layer of the fixed eye was recorded in an axial and sagittal view using a micro-CT imaging acquisition method. The micro-CT analysis showed that the cross-section areas of the retina, RPE, and choroid layer thickness were changed in spaceflight samples compared to GC, with spaceflight samples showing significantly thinner cross-sections and layers compared to controls. The findings from this study indicate that micro-CT evaluation is a sensitive and reliable method to characterize ocular structure changes. These results are expected to improve the understanding of the impact of environmental stress on global ocular structures.
Volume
2020
Issue
164
Language
English
OCDE Knowledge area
OftalmologÃa
DOI
Scopus EID
2-s2.0-85096280245
PubMed ID
Source
Journal of Visualized Experiments
ISSN of the container
1940087X
Sources of information:
Directorio de Producción CientÃfica
Scopus