Title
Ultrasonic attenuation imaging in a rodent thyroid cancer model
Date Issued
01 December 2013
Access level
metadata only access
Resource Type
conference paper
Author(s)
Abstract
The incidence of diagnosed thyroid cancer has increased significantly over the last decades. Although advances in ultrasonic imaging have increased the malignancy detection rate, current ultrasonic imaging markers do not provide a sufficient level of diagnostic accuracy to replace biopsy. Recent studies suggest that ultrasound parameters derived from backscatter coefficients may allow differentiating among different types of thyroid tumors and normal tissues in a rodent model ex vivo. In this work, the potential use of attenuation coefficient (AC) estimates for the same purpose was explored. A sample set of 24 excised mice thyroids were scanned using a 40-MHz, f/3 single element transducer. The experimental dataset contained six animals that developed papillary thyroid carcinoma (PTC), five that developed follicular variant papillary thyroid carcinoma (FV-PTC), five that developed c-Cell adenoma (c-Cell) and eight that did not develop thyroid abnormalities (control). AC slope maps were generated with a spectral log difference method using 0.5mm by 0.5mm data blocks. Outliers of each slice due to artifacts in AC estimation were discarded using the Thompson Tau method. Finally, a Kruskal-Wallis test was conducted to analyze if statistically significant differences in the mean AC slope among the four groups existed. The median and interquartile range for each group were 1.29 and 0.22 dB/cm-MHz for the control group, 1.64 and 0.09 dB/cm-MHz for c-Cell, 1.16 and 0.12 dB/cm-MHz for PTC and 1.33 and 0.08 dB/cm-MHz for FV-PTC, respectively. These values are consistent with previous reports of attenuation in thyroid tissues. The Kruskal-Wallis test reported statistically significant differences between the c-Cell group and the other groups of study and between the PTC and FV-PTC groups (p<0.05). These preliminary results suggest that the AC may be used to characterize thyroid tissues. © 2013 IEEE.
Start page
88
End page
91
Language
English
OCDE Knowledge area
Ingeniería eléctrica, Ingeniería electrónica
Subjects
Scopus EID
2-s2.0-84894361785
ISBN
9781467356862
Source
IEEE International Ultrasonics Symposium, IUS
ISSN of the container
19485719
Sources of information:
Directorio de Producción Científica
Scopus