Title
On the fundamentals aspects of hematite bioflotation using a Gram positive strain
Date Issued
15 May 2017
Access level
metadata only access
Resource Type
journal article
Author(s)
Pontifical Catholic University of Rio de Janeiro
Pontifical Catholic University of Rio de Janeiro
Publisher(s)
Elsevier Ltd
Abstract
The use of microorganisms and/or their metabolic products is becoming an attractive alternative in mineral processing. In that sense, this research deals with the use of the hydrophobic gram positive Rhodococcus erythropolis bacteria as a possible substitute of synthetic reagents used in hematite flotation. Bacterial growth experiments, using culture media of tryptic soy broth (TSB) and yeast and malt extract with glucose (YMG) separately, showed a greater bacterial density for the first one. In addition, it was observed that the isoelectric point (IEP) of hematite was shifted after biomass interaction, suggesting that the bacterial cells were adhered onto the mineral surface. Moreover, bacterial adhesion was higher at acidic pH, which also suggests an electrostatic attraction between the mineral surface and the biomass at this pH range. Microflotation tests were carried out in a modified Hallimond tube achieving a maximum hematite floatability of 83.86% at pH 6. Finally, the kinetics of the process followed a second order model.
Start page
55
End page
63
Volume
106
Language
English
OCDE Knowledge area
Biología celular, Microbiología Biotecnología ambiental
Scopus EID
2-s2.0-84994013678
Source
Minerals Engineering
ISSN of the container
08926875
Sources of information: Directorio de Producción Científica Scopus