Title
Whole genome sequencing analysis of Plasmodium vivax using whole genome capture
Date Issued
21 June 2012
Access level
open access
Resource Type
journal article
Author(s)
Bright A.T.
Tewhey R.
Abeles S.
Ferreira M.U.
Schork N.J.
Winzeler E.A.
University of California
University of California
Abstract
Background: Malaria caused by Plasmodium vivax is an experimentally neglected severe disease with a substantial burden on human health. Because of technical limitations, little is known about the biology of this important human pathogen. Whole genome analysis methods on patient-derived material are thus likely to have a substantial impact on our understanding of P. vivax pathogenesis and epidemiology. For example, it will allow study of the evolution and population biology of the parasite, allow parasite transmission patterns to be characterized, and may facilitate the identification of new drug resistance genes. Because parasitemias are typically low and the parasite cannot be readily cultured, on-site leukocyte depletion of blood samples is typically needed to remove human DNA that may be 1000X more abundant than parasite DNA. These features have precluded the analysis of archived blood samples and require the presence of laboratories in close proximity to the collection of field samples for optimal pre-cryopreservation sample preparation.Results: Here we show that in-solution hybridization capture can be used to extract P. vivax DNA from human contaminating DNA in the laboratory without the need for on-site leukocyte filtration. Using a whole genome capture method, we were able to enrich P. vivax DNA from bulk genomic DNA from less than 0.5% to a median of 55% (range 20%-80%). This level of enrichment allows for efficient analysis of the samples by whole genome sequencing and does not introduce any gross biases into the data. With this method, we obtained greater than 5X coverage across 93% of the P. vivax genome for four P. vivax strains from Iquitos, Peru, which is similar to our results using leukocyte filtration (greater than 5X coverage across 96% ).Conclusion: The whole genome capture technique will enable more efficient whole genome analysis of P. vivax from a larger geographic region and from valuable archived sample collections. © 2012 Bright et al.; licensee BioMed Central Ltd.
Volume
13
Issue
1
Language
English
OCDE Knowledge area
Parasitología Biología celular, Microbiología
Subjects
Scopus EID
2-s2.0-84862492581
PubMed ID
Source
BMC Genomics
Sponsor(s)
We would like to thank Alex Tenorio for help with identifying patients for this study and collecting samples and Naval Medical Research Unit – 6 Iquitos, Peru for assistance in collecting samples. We would also like to thank Dr. John W. Barnwell of the Division of Parasitic Diseases, Centers for Disease Control and Prevention, Atlanta, GA for providing the Sal1 genomic DNA used in the creation of the WGB and John Walker of the Genomics Institute of the Novartis Research Foundation for sequencing IQ07 and Acre 3. Finally, we would like to thank the TSRI Next Generation Sequencing Core Facility for assistance with sequencing. E.A.W. was supported by National Institutes of Health Grant R21-AI085374-01A1. A.T.B. was supported in part by the UCSD Genetics Training Program through an institutional training grant from the National Institute of General Medical Sciences (T32 GM008666). RT and NJS were supported by NIH/NCRR Grant Number UL1 RR025774. This work was also supported in part by National Institutes of Health grant U19AI089681, 1K24AI068903, D43TW007120 and R01AI067727 (J.M.V.).
Sources of information: Directorio de Producción Científica Scopus