Title
Soil organic carbon stocks controlled by lithology and soil depth in a Peruvian alpine grassland of the Andes
Date Issued
01 December 2018
Access level
open access
Resource Type
research article
Author(s)
Abstract
The soil is the largest carbon (C) pool in the terrestrial ecosystem, and soil organic carbon (SOC) stocks play an important role in global C dynamics. Alpine grasslands of the Andes are characterized by high SOC stocks. Quantifying SOC stocks and unraveling key factors controlling SOC stocks, is necessary to obtain a better understanding of the dynamics of the large C stocks in this environment. However, most studies on C dynamics of the Andes focus on volcanic-ash soils, whereas information about non-volcanic ash soils in this region is scarce. Our objectives were: (i) to estimate SOC stocks in an alpine grassland of the Peruvian Andes (7° 11′S, 78° 35′W) with parent materials other than volcanic ash, and (ii) to identify the underlying soil formation and environmental (SFE) factors and soil properties explaining observed patterns of SOC stocks. We sampled 69 plots up to the parent material to measure soil properties and to calculate SOC stocks, in relation to lithology, land use, grazing intensity, slope angle, slope position and altitude. We applied linear models to identify key factors controlling SOC stocks. Our results showed that total SOC stocks had a mean value of 215 ± 21 T ha−1, whereas SOC stocks of the upper 10 cm and 40 cm comprised 29.3% and 80.0% of total SOC stocks respectively. The variation of the total SOC stocks was mainly explained by soil depth and soil moisture. When soil depth and soil moisture were controlled as conditional variables, lithology became the key factor controlling the total SOC stocks. For the SOC stocks of the upper 10 cm, soil moisture explained a large part of the variation, whereas lithology, grazing intensity and altitude were also significant predictors. Our results also show that when soils are sampled with limited depths instead of the entire soil profile, SOC stocks can be underestimated, and the effects of the SFE factors on SOC stocks can be overestimated.
Start page
11
End page
21
Volume
171
Language
English
OCDE Knowledge area
Geociencias, Multidisciplinar
Subjects
Scopus EID
2-s2.0-85049434005
Source
Catena
ISSN of the container
03418162
Sponsor(s)
We would like to thank the local communities of Sexemayo and Chetilla (Cajamarca, Peru) for their kind permission to access their communal lands and to take soil samples. We would like to thank the Universidad Nacional de Cajamarca for their support during fieldwork, and the Institute for Biodiversity and Ecosystem Dynamics (IBED) of the University of Amsterdam for their financial and laboratory support, as well as the China Scholarship Council (CSC) for funding. We also would like to thank Jan Sevink, Leo Hoitinga, Chiara Cerli and Jorien Schoorl for their support of field work and lab analysis, and two unknown reviews for their comments to improve this paper.
Sources of information:
Directorio de Producción Científica
Scopus