Title
Genomic and Phenotypic Characterization of Experimentally Selected Resistant Leishmania donovani Reveals a Role for Dynamin-1-Like Protein in the Mechanism of Resistance to a Novel Antileishmanial Compound
Date Issued
01 February 2022
Access level
open access
Resource Type
journal article
Author(s)
Hefnawy A.
Negreira G.
Cotton J.A.
Maes I.
D’Haenens E.
Imamura H.
Cuypers B.
Monsieurs P.
Mouchtoglou C.
De Winter H.
Pintelon I.
Timmermans J.P.
Berriman M.
Sanders M.
Martin J.
de Muylder G.
Dujardin J.C.
Sterckx Y.G.J.
Domagalska M.A.
Institute of Tropical Medicine,
Publisher(s)
American Society for Microbiology
Abstract
The implementation of prospective drug resistance (DR) studies in the research-and-development (R&D) pipeline is a common practice for many infectious diseases but not for neglected tropical diseases (NTDs). Here, we explored and demonstrated the importance of this approach using as paradigms Leishmania donovani, the etiological agent of visceral leishmaniasis (VL), and TCMDC-143345, a promising compound of the GlaxoSmithKline (GSK) “Leishbox” to treat VL. We experimentally selected resistance to TCMDC-143345 in vitro and characterized resistant parasites at the genomic and phenotypic levels. We found that it took more time to develop resistance to TCMDC-143345 than to other drugs in clinical use and that there was no cross-resistance to these drugs, suggesting a new and unique mechanism. By whole-genome sequencing, we found two mutations in the gene encoding the L. donovani dynamin-1-like protein (LdoDLP1) that were fixed at the highest drug pressure. Through phylogenetic analysis, we identified LdoDLP1 as a family member of the dynamin-related proteins, a group of proteins that impacts the shapes of biological membranes by mediating fusion and fission events, with a putative role in mitochondrial fission. We found that L. donovani lines genetically engineered to harbor the two identified LdoDLP1 mutations were resistant to TCMDC-143345 and displayed altered mitochondrial properties. By homology modeling, we showed how the two LdoDLP1 mutations may influence protein structure and function. Taken together, our data reveal a clear involvement of LdoDLP1 in the adaptation/reduced susceptibility of L. donovani to TCMDC-143345. IMPORTANCE Humans and their pathogens are continuously locked in a molecular arms race during which the eventual emergence of pathogen drug resistance (DR) seems inevitable. For neglected tropical diseases (NTDs), DR is generally studied retrospectively once it has already been established in clinical settings. We previously recommended to keep one step ahead in the host-pathogen arms race and implement prospective DR studies in the R&D pipeline, a common practice for many infectious diseases but not for NTDs. Here, using Leishmania donovani, the etiological agent of visceral leishmaniasis (VL), and TCMDC-143345, a promising compound of the GSK Leishbox to treat VL, as paradigms, we experimentally selected resistance to the compound and proceeded to genomic and phenotypic characterization of DR parasites. The results gathered in the present study suggest a new DR mechanism involving the L. donovani dynamin-1-like protein (LdoDLP1) and demonstrate the practical relevance of prospective DR studies.
Volume
13
Issue
1
Language
English
OCDE Knowledge area
Enfermedades infecciosas
Parasitología
Genética, Herencia
Subjects
Scopus EID
2-s2.0-85125833860
PubMed ID
Source
mBio
ISSN of the container
21612129
Sponsor(s)
Funding text
This study has received funding from the European Union’s Horizon 2020 research and innovation program under Marie Sklodowska-Curie grant agreement number 642609 and the Flemish Fund for Scientific Research (12Q8115N). M.J. is supported by the Flemish Fund for Scientific Research (postdoctoral fellowship). G.N. is supported by the Flemish Ministry of Science and Innovation (SOFI grant MADLEI). J.A.C., M.B., and M.S. are supported by The Wellcome Trust via its core funding of The Wellcome Trust Sanger Institute (grant 206194). The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Sources of information:
Directorio de Producción Científica
Scopus