Title
Engineered mesenchymal stem cells as vectors in a suicide gene therapy against preclinical murine models for solid tumors
Date Issued
10 October 2016
Access level
metadata only access
Resource Type
journal article
Author(s)
Amara I.
Pramil E.
Senamaud-Beaufort C.
Devillers A.
Lescaille G.
Seguin J.
Tartour E.
Lemoine F.M.
Beaune P.
de Waziers I.
Sorbonne University
Publisher(s)
Elsevier B.V.
Abstract
Gene-directed enzyme pro-drug therapy (GDEPT) consists of expressing, in tumor cells, a suicide gene which converts a pro-drug into cytotoxic metabolites, in situ. In a previous work, we demonstrated that the combination of the suicide gene CYP2B6TM-RED (a fusion of a triple mutant of CYP2B6 with NADPH cytochrome P450 reductase) and cyclophosphamide (CPA) constituted a powerful treatment for solid tumors. In this work, we investigated the use of mesenchymal stem cells (MSCs) as cellular vehicles for the delivery of our suicide gene. MSCs were genetically engineered ex-vivo to stably express CYP2B6TM-RED. Ex vivo and in vivo investigations showed that MSCs expressing CYP2B6TM-RED were able 1) to bioactivate CPA and produce local cytotoxic metabolites in tumor sites and 2) to destroy neighboring tumor cells through a bystander effect. Intratumoral injections of CYP2B6TM-RED-MSCs and CPA completely eradicated tumors in 33% of mice without recurrence after 6 months. Rechallenge experiments demonstrated an efficient immune response. These data suggest that MSCs expressing CYP2B6TM-RED with CPA could represent a promising treatment for solid tumors to test in future clinical trials.
Start page
82
End page
91
Volume
239
Language
English
OCDE Knowledge area
Genética humana Oncología
Scopus EID
2-s2.0-84983537918
PubMed ID
Source
Journal of Controlled Release
ISSN of the container
01683659
Sponsor(s)
This work was supported by the Ligue Nationale contre le Cancer , comité de Paris ( RS15/75-47 , RS16/75-31 ) and the SATT Ile-de-France Innov (Projet 91) . Ikrame Amara was a graduate student funded by Canceropole Ile-de-France. Cyclophosphamide (Endoxan®) was kindly provided by Baxter France. We would like to thank Claude Baillou for helpful technical assistance and Lawrence Aggerbeck for editorial assistance.
Sources of information: Directorio de Producción Científica Scopus