Title
Neutral pion reconstruction using machine learning in the MINERvA experiment at 〈E<inf>v</inf>〉 ∼ 6GeV
Date Issued
01 July 2021
Access level
open access
Resource Type
journal article
Author(s)
Ghosh A.
Yaeggy B.
Galindo R.
Dar Z.A.
Akbar F.
Ascencio M.V.
Bashyal A.
Bercellie A.
Bonilla J.L.
Caceres G.
Cai T.
Carneiro M.F.
da Motta H.
Díaz G.A.
Felix J.
Filkins A.
Fine R.
Golan T.
Gran R.
Harris D.A.
Henry S.
Jena S.
Jena D.
Kleykamp J.
Kordosky M.
Last D.
Le T.
Lozano A.
Lu X.G.
Maher E.
Manly S.
Mann W.A.
Mauger C.
McFarland K.S.
Messerly B.
Miller J.
Montano L.M.
Naples D.
Nelson J.K.
Nguyen C.
Olivier A.
Paolone V.
Perdue G.N.
Ramírez M.A.
Ray H.
Ruterbories D.
Su H.
Sultana M.
Syrotenko V.S.
Valencia E.
Wospakrik M.
Wret C.
Yang K.
Zazueta L.
Publisher(s)
IOP Publishing Ltd
Abstract
This paper presents a novel neutral-pion reconstruction that takes advantage of the machine learning technique of semantic segmentation using MINERvA data collected between 2013-2017, with an average neutrino energy of 6 GeV. Semantic segmentation improves the purity of neutral pion reconstruction from two γs from 70.7 ± 0.9% to 89.3 ± 0.7% and improves the efficiency of the reconstruction by approximately 40%. We demonstrate our method in a charged current neutral pion production analysis where a single neutral pion is reconstructed. This technique is applicable to modern tracking calorimeters, such as the new generation of liquid-argon time projection chambers, exposed to neutrino beams with 〈Ev〉 between 1-10 GeV. In such experiments it can facilitate the identification of ionization hits which are associated with electromagnetic showers, thereby enabling improved reconstruction of charged-current ve events arising from vμ → ve appearance.
Volume
16
Issue
7
Language
English
OCDE Knowledge area
Física de partículas, Campos de la Física
Subjects
Scopus EID
2-s2.0-85112025084
Source
Journal of Instrumentation
ISSN of the container
17480221
Sources of information:
Directorio de Producción Científica
Scopus