Title
Hybrid Photovoltaic-Wind Microgrid With Battery Storage for Rural Electrification: A Case Study in Perú
Date Issued
18 February 2021
Access level
open access
Resource Type
journal article
Publisher(s)
Frontiers Media S.A.
Abstract
Microgrids are autonomous systems that generate, distribute, store, and manage energy. This type of energy solution has the potential to supply energy to remote communities since they can integrate solar, wind, and back-up diesel generation. These systems are potentially beneficial in Peru, where there are approximately 1.5 million people without access to electricity. This paper studies the technical aspects of the implementation, operation, and social impact of a hybrid microgrid installed in Laguna Grande, Ica, Peru, a rural fishing community composed of about 35 families who have lived in this remote location for more than 40 years without access to electricity. The design of the microgrid comprised three main stages: assessment, sizing, and social management. According to resource assessment, this location has a very high wind potential with an average of 8 m/s and annual average irradiation of 6 kWh/m2/day. The microgrid was designed based on interviews with members of the community on energy use, social-economic aspects, and factors such as expected growth and available funds. The construction followed a participatory approach, involving the community in specific stages of the project. This hybrid microgrid is composed of a 6 kWp photovoltaic system and two wind turbines of 3 kW each. It has two coupled 4 kW inverters that deliver power to a 230 V AC distribution line to which all the community loads are connected. Energy is stored using a VRLA 800 Ah, 48 V battery bank, which is designed to work at 50% DOD. The installed microgrid has proven very effective in supplying the average daily demand of 23 kWh at an almost steady power of 1–1.2 kW. During almost 2 years of monitoring, it has presented a 10% loss of load due to peak increases in demand, technical problems, and occasional low solar and wind resources. PV/wind integration is very important since approximately 60% of the energy demand is nocturnal. The CAPEX of the project reached USD 36,000.00, obtaining a cost of energy levelized cost of energy of 0.267 USD per kWh. The project has a useful life of 20 years, with battery renewal every 3 years and wind turbines and electronics every 10.
Volume
8
Language
English
OCDE Knowledge area
Ingeniería eléctrica, Ingeniería electrónica
Ciencias naturales
Ingeniería mecánica
Subjects
Scopus EID
2-s2.0-85102131495
Source
Frontiers in Energy Research
ISSN of the container
2296598X
Sponsor(s)
The engineering, provision, construction, and social management of the Laguna Grande hybrid microgrid was partially funded by the Interamerican Development Bank. This funder was not involved in the study design, collection, analysis, interpretation of data, the writing of this article or the decision to submit it for publication. The project was granted USD 98,000 by the “BID Ideas 2015” contest and was executed by the Peruvian company Waira Energía SAC. The current research and monitoring of the system are carried out with private funds.
The authors would like to thank the community of Laguna Grande, Sector Muelle, for their involvement, support, and collaboration with this project. Special acknowledgments to Esther Saravia, for her unconditional support and willingness to learn. Finally, the authors thank the IDB for the funding of the project.
Sources of information:
Directorio de Producción Científica
Scopus