Title
A Novel Diselenide-Probucol-Analogue Protects Against Methylmercury-Induced Toxicity in HT22 Cells by Upregulating Peroxide Detoxification Systems: a Comparison with Diphenyl Diselenide
Date Issued
01 February 2022
Access level
metadata only access
Resource Type
journal article
Author(s)
Wolin I.A.V.
Canto R.F.S.
Barbosa F.A.R.
Braga A.L.
Rocha J.B.T.
Aschner M.
Leal R.B.
de Bem A.F.
Farina M.
Universidade Federal de Santa Catarina
Universidade Federal de Santa Catarina
Publisher(s)
Springer
Abstract
Methylmercury (MeHg) is a ubiquitous environmental neurotoxicant whose mechanisms of action involve oxidation of endogenous nucleophilic groups (mainly thiols and selenols), depletion of antioxidant defenses, and disruption of neurotransmitter homeostasis. Diphenyl diselenide—(PhSe)2—a model diaryl diselenide, has been reported to display significant protective effects against MeHg-induced neurotoxicity under both in vitro and in vivo experimental conditions. In this study, we compared the protective effects of (PhSe)2 with those of RC513 (4,4′-diselanediylbis(2,6-di-tert-butylphenol), a novel diselenide-probucol-analog) against MeHg-induced toxicity in the neuronal (hippocampal) cell line HT22. Although both (PhSe)2 and RC513 significantly mitigated MeHg- and tert-butylhydroperoxide (t-BuOOH)-cytotoxicity, the probucol analog exhibited superior protective effects, which were observed earlier and at lower concentrations compared to (PhSe)2. RC513 treatment (at either 0.5 µM or 2 µM) significantly increased glutathione peroxidase (GPx) activity, which has been reported to counteract MeHg-toxicity. (PhSe)2 was also able to increase GPx activity, but only at 2 µM. Although both compounds increased the Gpx1 transcripts at 6 h after treatments, only RC513 was able to increase mRNA levels of Prx2, Prx3, Prx5, and Txn2, which are also involved in peroxide detoxification. RC513 (at 2 µM) significantly increased GPx-1 protein expression in HT22 cells, although (PhSe)2 displayed a minor (nonsignificant) effect in this parameter. In agreement, RC513 induced a faster and superior capability to cope with exogenously-added peroxide (t-BuOOH). In summary, when compared to the prototypical organic diaryl diselenide [(PhSe)2], RC513 displayed superior protective properties against MeHg-toxicity in vitro; this was paralleled by a more pronounced upregulation of defenses related to detoxification of peroxides, which are well-known MeHg-derived intermediate oxidant species.
Start page
127
End page
139
Volume
40
Issue
1
Language
English
OCDE Knowledge area
Ingeniería, Tecnología
Biología
Subjects
Scopus EID
2-s2.0-85123098570
PubMed ID
Source
Neurotoxicity Research
ISSN of the container
10298428
Source funding
National Institute of Environmental Health Sciences
Sources of information:
Directorio de Producción Científica
Scopus