Title
Impact of intercept trap type on plume structure: a potential mechanism for differential performance of intercept trap designs for Monochamus species
Date Issued
01 June 2020
Access level
metadata only access
Resource Type
journal article
Author(s)
Bouwer M.C.
MacQuarrie C.J.K.
Slippers B.
Allison J.D.
Universidad Estatal de São Paulo
Publisher(s)
Springer
Abstract
Studies have demonstrated that semiochemical-baited intercept traps differ in their performance for sampling insects, but we have an incomplete understanding of how and why intercept trap design effects vary among insects. This can significantly delay both the development of new and optimization of existing survey and detection tools. The development of a mechanistic understanding of why trap performance varies within and among species would mitigate this delay. The primary objective of this study was to develop methods to characterize and compare the odor plumes associated with intercept traps that differ in their performance for forest Coleoptera. We released CO2 and measured fluctuations of this tracer gas from 175-point locations arranged in a 2-by-3-by-2-m grid cuboid downwind of a standard multiple-funnel, a modified multiple-funnel, a panel, a canopy malaise trap, and a blank control (i.e., no trap) in a greenhouse. Significant differences in trapping efficacy between these different trap designs were observed for Monochamus scutellatus (Say) and Monochamus notatus (Drury) in a field trial. Significant differences were also observed in how CO2 accumulated in time at different positions downwind among these different trap designs. Turbulent dispersion is the dominant force structuring odor plumes and creates intermittency in the odor plume that is important for sustained upwind flight in insects. Methodological and instrumental limitations resulted in the inability to determine instantaneous plume structures and vortex shedding frequencies for different intercept trap designs. Although we observed differences in the odor plumes emanating downwind of the different intercept trap designs, we were unable to reconcile these differences with capture rates of the different trap designs for M. scutellatus and M. notatus.
Start page
993
End page
1005
Volume
93
Issue
3
Language
English
OCDE Knowledge area
Agricultura Biotecnología agrícola, Biotecnología alimentaria
Scopus EID
2-s2.0-85079750310
Source
Journal of Pest Science
ISSN of the container
16124758
Sponsor(s)
Reginald Nott is thanked for technical support. We thank Patt Ross for access to New North Greenhouses, Brian Strom and Ring Card? for review of an earlier draft and the National Research Foundation of South Africa (Grant #99644), Natural Resources Canada and USDA?Animal and Plant Health Inspection Service (Grant #15?8130-0395-CA), for financial support.
Sources of information: Directorio de Producción Científica Scopus