Title
Computer-Automated Malaria Diagnosis and Quantitation Using Convolutional Neural Networks
Date Issued
01 July 2017
Access level
metadata only access
Resource Type
conference paper
Author(s)
Mehanian C.
Jaiswal M.
Delahunt C.
Thompson C.
Horning M.
Hu L.
McGuire S.
Ostbye T.
Mehanian M.
Wilson B.
Champlin C.
Long E.
Proux S.
Chiodini P.
Carter J.
Dhorda M.
Isaboke D.
Ogutu B.
Oyibo W.
Tun K.M.
Bachman C.
Bell D.
Universidad Peruana Cayetano Heredia
Universidad Peruana Cayetano Heredia
Abstract
The optical microscope remains a widely-used tool for diagnosis and quantitation of malaria. An automated system that can match the performance of well-trained technicians is motivated by a shortage of trained microscopists. We have developed a computer vision system that leverages deep learning to identify malaria parasites in micrographs of standard, field-prepared thick blood films. The prototype application diagnoses P. falciparum with sufficient accuracy to achieve competency level 1 in the World Health Organization external competency assessment, and quantitates with sufficient accuracy for use in drug resistance studies. A suite of new computer vision techniques-global white balance, adaptive nonlinear grayscale, and a novel augmentation scheme-underpin the system's state-of-the-art performance. We outline a rich, global training set; describe the algorithm in detail; argue for patient-level performance metrics for the evaluation of automated diagnosis methods; and provide results for P. falciparum.
Start page
116
End page
125
Volume
2018-January
Scopus EID
2-s2.0-85046248728
ISBN
9781538610343
Source
Proceedings - 2017 IEEE International Conference on Computer Vision Workshops, ICCVW 2017
Resource of which it is part
Proceedings - 2017 IEEE International Conference on Computer Vision Workshops, ICCVW 2017
Sources of information: Directorio de Producción Científica Scopus