Title
Drug-induced epigenetic changes produce drug tolerance
Date Issued
01 October 2007
Access level
open access
Resource Type
journal article
Author(s)
Wang Y.
Krishnan H.R.
Yin J.C.P.
Atkinson N.S.
Universidad Brandeis
Publisher(s)
Public Library of Science
Abstract
Tolerance to drugs that affect neural activity is mediated, in part, by adaptive mechanisms that attempt to restore normal neural excitability. Changes in the expression of ion channel genes are thought to play an important role in these neural adaptations. The slo gene encodes the pore-forming subunit of BK-type Ca2+-activated K+ channels, which regulate many aspects of neural activity. Given that induction of slo gene expression plays an important role in the acquisition of tolerance to sedating drugs, we investigated the molecular mechanism of gene induction. Using chromatin immunoprecipitation followed by real-time PCR, we show that a single brief sedation with the anesthetic benzyl alcohol generates a spatiotemporal pattern of histone H4 acetylation across the slo promoter region. Inducing histone acetylation with a histone deacetylase inhibitor yields a similar pattern of changes in histone acetylation, upregulates slo expression, and phenocopies tolerance in a slo-dependent manner. The cAMP response element binding protein (CREB) is an important transcription factor mediating experience-based neuroadaptations. The slo promoter region contains putative binding sites for the CREB transcription factor. Chromatin immunoprecipitation assays show that benzyl alcohol sedation enhances CREB binding within the slo promoter region. Furthermore, activation of a CREB dominant-negative transgene blocks benzyl alcohol-induced changes in histone acetylation within the slo promoter region, slo induction, and behavioral tolerance caused by benzyl alcohol sedation. These findings provide unique evidence that links molecular epigenetic histone modifications and transcriptional induction of an ion channel gene with a single behavioral event. © 2007 Wang et al.
Start page
2342
End page
2353
Volume
5
Issue
10
Language
English
OCDE Knowledge area
Neurociencias Farmacología, Farmacia
Scopus EID
2-s2.0-35649019242
PubMed ID
Source
PLoS Biology
ISSN of the container
1545-7885
Sponsor(s)
National Institute on Drug Abuse R01DA022219
Sources of information: Directorio de Producción Científica Scopus