Title
Minimization of quadratic functions on convex sets without asymptotes
Date Issued
01 January 2018
Access level
metadata only access
Resource Type
journal article
Author(s)
Universidade Católica de Brasilia
Publisher(s)
Heldermann Verlag
Abstract
The classical Frank and Wolfe theorem states that a quadratic function which is bounded below on a convex polyhedron P attains its infimum on P. We investigate whether more general classes of convex sets F can be identified which have this Frank-and-Wolfe property. We show that the intrinsic characterizations of Frank-and-Wolfe sets hinge on asymptotic properties of these sets.
Start page
623
End page
641
Volume
25
Issue
2
Language
English
OCDE Knowledge area
Matemáticas
Subjects
Scopus EID
2-s2.0-85046249817
Source
Journal of Convex Analysis
ISSN of the container
09446532
Source funding
Australian Research Council
Sponsor(s)
Australian Research Council DP140103213 ARC
Ministerio de Economía y Competitividad MTM2014-59179-C2-2-P, SEV-2015-0563 MINECO
Conselho Nacional de Desenvolvimento Científico e Tecnológico 302074/2012-0, 471168/2013-0 CNPq
Fondation Mathématique Jacques HadamardFMJH
Sources of information:
Directorio de Producción Científica
Scopus