Title
Minimization of quadratic functions on convex sets without asymptotes
Date Issued
01 January 2018
Access level
metadata only access
Resource Type
journal article
Author(s)
Martínez-Legaz J.E.
Noll D.
Universidade Católica de Brasilia
Publisher(s)
Heldermann Verlag
Abstract
The classical Frank and Wolfe theorem states that a quadratic function which is bounded below on a convex polyhedron P attains its infimum on P. We investigate whether more general classes of convex sets F can be identified which have this Frank-and-Wolfe property. We show that the intrinsic characterizations of Frank-and-Wolfe sets hinge on asymptotic properties of these sets.
Start page
623
End page
641
Volume
25
Issue
2
Language
English
OCDE Knowledge area
Matemáticas
Scopus EID
2-s2.0-85046249817
Source
Journal of Convex Analysis
ISSN of the container
09446532
Source funding
Australian Research Council
Sponsor(s)
Australian Research Council DP140103213 ARC Ministerio de Economía y Competitividad MTM2014-59179-C2-2-P, SEV-2015-0563 MINECO Conselho Nacional de Desenvolvimento Científico e Tecnológico 302074/2012-0, 471168/2013-0 CNPq Fondation Mathématique Jacques HadamardFMJH
Sources of information: Directorio de Producción Científica Scopus