Title
Fault diagnosis via neural ordinary differential equations
Date Issued
01 May 2021
Access level
open access
Resource Type
journal article
Author(s)
Publisher(s)
MDPI AG
Abstract
Implementation of model-based fault diagnosis systems can be a difficult task due to the complex dynamics of most systems, an appealing alternative to avoiding modeling is to use machine learning-based techniques for which the implementation is more affordable nowadays. However, the latter approach often requires extensive data processing. In this paper, a hybrid approach using recent developments in neural ordinary differential equations is proposed. This approach enables us to combine a natural deep learning technique with an estimated model of the system, making the training simpler and more efficient. For evaluation of this methodology, a nonlinear benchmark system is used by simulation of faults in actuators, sensors, and process. Simulation results show that the proposed methodology requires less processing for the training in comparison with conventional machine learning approaches since the data-set is directly taken from the measurements and inputs. Furthermore, since the model used in the essay is only a structural approximation of the plant; no advanced modeling is required. This approach can also alleviate some pitfalls of training data-series, such as complicated data augmentation methodologies and the necessity for big amounts of data.
Volume
11
Issue
9
Number
3776
Language
English
OCDE Knowledge area
Ingeniería de sistemas y comunicaciones Sistemas de automatización, Sistemas de control
Scopus EID
2-s2.0-85105303041
Source
Applied Sciences (Switzerland)
ISSN of the container
20763417
Sponsor(s)
Acknowledgments: The authors are grateful for the finantial support from Proyecto Concytec— Banco Mundial “Mejoramiento y Ampliación de los Servicios del Sistema Nacional de Ciencia Tecnología e Innovación Tecnológica” 8682-PE, a través de su unidad ejecutora Fondecyt, and from Contrato de Adjudicación de fondos N◦ 10-2018-FONDECYT/BM-Programas de Doctorados en Áreas Estratégicas y Generales. The authors are grateful for the finantial support from Proyecto Concytec Banco Mundial Mejoramiento y Ampliación de los Servicios del Sistema Nacional de Ciencia Tecnología e Innovación Tecnológica 8682-PE, a través de su unidad ejecutora Fondecyt, and from Contrato de Adjudicación de fondos N° 10-2018-FONDECYT/BM-Programas de Doctorados en áreas Estratégicas y Generales.
Sources of information: Directorio de Producción Científica Scopus