Title
Data-driven numerical simulations of equatorial spread F in the Peruvian sector
Date Issued
01 May 2014
Access level
open access
Resource Type
journal article
Author(s)
Jicamarca Radio Observatory
Publisher(s)
Blackwell Publishing Ltd
Abstract
Ionospheric state parameters including plasma number density and vector drift velocity profiles were measured at the Jicamarca Radio Observatory during a campaign running from 12 to 18 April 2013. Neutral winds were measured by the red-line Fabry Perot interferometer at Jicamarca. Coherent radar backscatter from plasma irregularities associated with equatorial spread F (ESF) was also recorded. A numerical simulation of ionospheric irregularities, initialized and forced using parameterizations derived from a combination of measurements and empirical models, was used to try to reproduce the ESF activity that occurred on three different nights. Simulations were able to recover the salient features of the irregularities that formed in each case and produce bottom-type, bottomside, and topside ESF. Realistic simulations require the accurate representation of the vertical currents that generate irregularities initially at the base of the F region as well as the zonal currents necessary for irregularities to expand in altitude and penetrate to the topside. The campaign data, numerical simulations, and protocols used to associate them are presented and evaluated. Key Points A new mode at Jicamarca acquires data suitable for validating forecast results A numerical simulation cognizant of the physical drivers and mechanisms is used The simulation reproduces the most salient day-to-day features of ESF ©2014. American Geophysical Union. All Rights Reserved.
Start page
3815
End page
3827
Volume
119
Issue
5
Language
English
OCDE Knowledge area
Meteorología y ciencias atmosféricas
Subjects
Scopus EID
2-s2.0-84902449366
PubMed ID
Source
Journal of Geophysical Research: Space Physics
Sources of information:
Directorio de Producción Científica
Scopus