Title
Pattern recognition in biological time series
Date Issued
17 November 2011
Access level
metadata only access
Resource Type
conference paper
Author(s)
Gómez-Vela F.
Martínez-Álvarez F.
Barranco C.D.
Díaz-Díaz N.
Rodríguez-Baena D.S.
Pablo de Olavide University of Seville
Abstract
Knowledge extraction from gene expression data has been one of the main challenges in the bioinformatics field during the last few years. In this context, a particular kind of data, data retrieved in a temporal basis (also known as time series), provide information about the way a gene can be expressed during time. This work presents an exhaustive analysis of last proposals in this area, particularly focusing on those proposals using non-supervised machine learning techniques (i.e. clustering, biclustering and regulatory networks) to find relevant patterns in gene expression. © 2011 Springer-Verlag.
Start page
164
End page
172
Volume
7023 LNAI
Language
English
OCDE Knowledge area
Ciencias de la información Informática y Ciencias de la Información
Scopus EID
2-s2.0-81055127046
Resource of which it is part
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISBN of the container
9783642252730
Conference
14th Conference of the Spanish Association for Artificial Intelligence, CAEPIA 2011
Sponsor(s)
Gobierno de Espana-Ministerio de Ciencia e InnovacionGob. Canarias-Agencia Canaria Invest., Innovacion Soc. Inf.Cabildo de TenerifeAyuntamiento de San Cristobal de La LagunaUniversity of La Laguna
Sources of information: Directorio de Producción Científica Scopus