Title
Numerical treatment on the new fractional-order SIDARTHE COVID-19 pandemic differential model via neural networks
Date Issued
01 March 2022
Access level
open access
Resource Type
journal article
Author(s)
Akkilic A.N.
Sabir, Zulqurnain
Raja M.A.Z.
Bulut H.
Publisher(s)
Springer Science and Business Media Deutschland GmbH
Abstract
In this study, modeling the COVID-19 pandemic via a novel fractional-order SIDARTHE (FO-SIDARTHE) differential system is presented. The purpose of this research seemed to be to show the consequences and relevance of the fractional-order (FO) COVID-19 SIDARTHE differential system, as well as FO required conditions underlying four control measures, called SI, SD, SA, and SR. The FO-SIDARTHE system incorporates eight phases of infection: susceptible (S), infected (I), diagnosed (D), ailing (A), recognized (R), threatening (T), healed (H), and extinct (E). Our objective of all these investigations is to use fractional derivatives to increase the accuracy of the SIDARTHE system. A FO-SIDARTHE system has yet to be disclosed, nor has it yet been treated using the strength of stochastic solvers. Stochastic solvers based on the Levenberg–Marquardt backpropagation methodology (L-MB) and neural networks (NNs), specifically L-MBNNs, are being used to analyze a FO-SIDARTHE problem. Three cases having varied values under the same fractional order are being presented to resolve the FO-SIDARTHE system. The statistics employed to provide numerical solutions toward the FO-SIDARTHE system are classified as obeys: 72% toward training, 18% in testing, and 10% for authorization. To establish the accuracy of such L-MBNNs utilizing Adams–Bashforth–Moulton, the numerical findings were compared with the reference solutions.
Volume
137
Issue
3
Language
English
OCDE Knowledge area
Matemáticas aplicadas Neurociencias Epidemiología
Scopus EID
2-s2.0-85126240073
Source
European Physical Journal Plus
ISSN of the container
21905444
Sources of information: Directorio de Producción Científica Scopus