Title
SCN4B acts as a metastasis-suppressor gene preventing hyperactivation of cell migration in breast cancer
Date Issued
05 December 2016
Access level
open access
Resource Type
journal article
Author(s)
Bon E.
Driffort V.
Gradek F.
Martinez-Caceres C.
Anchelin M.
Pelegrin P.
Cayuela M.L.
Marionneau-Lambot S.
Oullier T.
Guibon R.
Fromont G.
Domingo I.
Piver E.
Moreau A.
Burlaud-Gaillard J.
Frank P.G.
Chevalier S.
Besson P.
Roger S.
Universite François-Rabelais de Tours
Publisher(s)
Nature Publishing Group
Abstract
The development of metastases largely relies on the capacity of cancer cells to invade extracellular matrices (ECM) using two invasion modes termed mesenchymal' and amoeboid', with possible transitions between these modes. Here we show that the SCN4B gene, encoding for the β4 protein, initially characterized as an auxiliary subunit of voltage-gated sodium channels (Na V) in excitable tissues, is expressed in normal epithelial cells and that reduced β4 protein levels in breast cancer biopsies correlate with high-grade primary and metastatic tumours. In cancer cells, reducing β4 expression increases RhoA activity, potentiates cell migration and invasiveness, primary tumour growth and metastatic spreading, by promoting the acquisition of an amoeboid-mesenchymal hybrid phenotype. This hyperactivated migration is independent of Na V and is prevented by overexpression of the intracellular C-terminus of β4. Conversely, SCN4B overexpression reduces cancer cell invasiveness and tumour progression, indicating that SCN4B/β4 represents a metastasis-suppressor gene.
Volume
7
Language
English
OCDE Knowledge area
Bioquímica, Biología molecular Genética, Herencia
Scopus EID
2-s2.0-85002933907
PubMed ID
Source
Nature Communications
ISSN of the container
20411723
DOI of the container
10.1038/ncomms13648
Sources of information: Directorio de Producción Científica Scopus