Title
The tokamak density limit: A thermo-resistive disruption mechanism
Date Issued
01 June 2015
Access level
open access
Resource Type
journal article
Author(s)
Princeton University
Publisher(s)
American Institute of Physics Inc.
Abstract
The behavior of magnetic islands with 3D electron temperature and the corresponding 3D resistivity effects on growth are examined for islands with near-zero net heating in the island interior. We refer to the resulting class of non-linearities as thermo-resistive effects. In particular, the effects of varying impurity mix on the previously proposed local island onset threshold [Gates and Delgado-Aparicio, Phys. Rev. Lett. 108, 165004 (2012)] are examined and shown to be consistent with the well established experimental scalings for tokamaks at the density limit. A surprisingly simple semi-analytic theory is developed which imposes the effects of heating/cooling in the island interior as well as the effects of island geometry. For the class of current profiles considered, it is found that a new term that accounts for the thermal effects of island asymmetry is required in the modified Rutherford equation. The resultant model is shown to exhibit a robust onset of a rapidly growing tearing mode - consistent with the disruption mechanism observed at the density limit in tokamaks. A fully non-linear 3D cylindrical calculation is performed that simulates the effect of net island heating/cooling by raising/suppressing the temperature in the core of the island. In both the analytic theory and the numerical simulation, the sudden threshold for rapid growth is found to be due to an interaction between three distinct thermal non-linearities which affect the island resistivity, thereby modifying the growth dynamics.
Volume
22
Issue
6
Language
English
OCDE Knowledge area
Física de la materia condensada
Scopus EID
2-s2.0-84935003359
Source
Physics of Plasmas
ISSN of the container
1070664X
Sponsor(s)
U.S. Department of Energy - DE-AC02-09CH11466, DE-SC0004125.
Sources of information:
Directorio de Producción Científica
Scopus