Title
Sugeno integral and geometric inequalities
Date Issued
01 February 2007
Access level
metadata only access
Resource Type
journal article
Author(s)
Roman-Flores H.
Universidad de Tarapacá
Publisher(s)
World Scientific Publishing Co. Pte Ltd
Abstract
In this work, we prove a Prékopa-Leindler type inequality for the Sugeno integral. More precisely, if 0 < λ 1 and h ((1 - λ)x + λy) ≥ f(x)1-λ g(y)λ, ∀ x, y ∈ ℝn, where h, f and g are nonnegative μ-measurable functions on ℝn, then fℝn hdμ ≥ (f ℝn fdμ) ∧ (fℝn gdμ), for any concave fuzzy measure μ. Also, we derive a general Brunn-Minkowski inequality (standard form) for any homogeneous quasiconcave fuzzy measure μ on ℝn. © World Scientific Publishing Company.
Start page
1
End page
11
Volume
15
Issue
1
Language
English
OCDE Knowledge area
Matemáticas
Scopus EID
2-s2.0-33847375086
Source
International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems
ISSN of the container
02184885
Sponsor(s)
This work was supported by CONICYT-CHILE through Project Fondecyt 1040303 and Dipog-UTA by Projects 4731-04 and 4731-05.
Sources of information: Directorio de Producción Científica Scopus