Title
Pushing the limits of high-resolution polymer microscopy using antioxidants
Date Issued
01 December 2021
Access level
open access
Resource Type
journal article
Author(s)
Kuei B.
The Pennsylvania State University
Publisher(s)
Nature Research
Abstract
High-resolution transmission electron microscopy (HRTEM) has been transformative to the field of polymer science, enabling the direct imaging of molecular structures. Although some materials have remarkable stability under electron beams, most HRTEM studies are limited by the electron dose the sample can handle. Beam damage of conjugated polymers is not yet fully understood, but it has been suggested that the diffusion of secondary reacting species may play a role. As such, we examine the effect of the addition of antioxidants to a series of solution-processable conjugated polymers as an approach to mitigating beam damage. Characterizing the effects of beam damage by calculating critical dose DC values from the decay of electron diffraction peaks shows that beam damage of conjugated polymers in the TEM can be minimized by using antioxidants at room temperature, even if the antioxidant does not alter or incorporate into polymer crystals. As a consequence, the addition of antioxidants pushes the resolution limit of polymer microscopy, enabling imaging of a 3.6 Å lattice spacing in poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3″′-di(2-octyldodecyl)-2,2′;5′,2″;5″,2″′-quaterthiophene-5,5″′-diyl)] (PffBT4T-2OD).
Volume
12
Issue
1
Language
English
OCDE Knowledge area
Ingeniería de materiales
Scopus EID
2-s2.0-85098965412
PubMed ID
Source
Nature Communications
Sponsor(s)
We acknowledge financial support from NSF through Award DMR-1609417 and DMR-1905550. B.K. acknowledges support by the DOE Office of Science Graduate Fellowship program and the Advanced Light Source Doctoral Fellowship in Residence. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. This research used resources of the Advanced Light Source, which is a DOE Office of Science User Facility under contract no. DE-AC02-05CH11231. We thank J. Ciston for assistance with HRTEM on the TEAM I.
Sources of information:
Directorio de Producción Científica
Scopus