Title
Unsupervised WSD by finding the predominant sense using context as a dynamic thesaurus
Date Issued
01 January 2010
Access level
metadata only access
Resource Type
journal article
Author(s)
CALVO, HIRAM
GELBUKH, ALEXANDER
HARA, KAZUO
National Polytechnic Institute
Nara Institute of Science and Technology
Publisher(s)
Springer New York LLC
Abstract
We present and analyze an unsupervised method for Word Sense Disambiguation (WSD). Our work is based on the method presented by McCarthy et al. in 2004 for finding the predominant sense of each word in the entire corpus. Their maximization algorithm allows weighted terms (similar words) from a distributional thesaurus to accumulate a score for each ambiguous word sense, i.e., the sense with the highest score is chosen based on votes from a weighted list of terms related to the ambiguous word. This list is obtained using the distributional similarity method proposed by Lin Dekang to obtain a thesaurus. In the method of McCarthy et al., every occurrence of the ambiguous word uses the same thesaurus, regardless of the context where the ambiguous word occurs. Our method accounts for the context of a word when determining the sense of an ambiguous word by building the list of distributed similar words based on the syntactic context of the ambiguous word. We obtain a top precision of 77.54% of accuracy versus 67.10% of the original method tested on SemCor. We also analyze the effect of the number of weighted terms in the tasks of finding the Most Frecuent Sense (MFS) and WSD, and experiment with several corpora for building the Word Space Model. © 2010 Springer Science+Business Media, LLC & Science Press, China.
Start page
1030
End page
1039
Volume
25
Issue
5
Language
English
OCDE Knowledge area
Ciencias de la computación
Scopus EID
2-s2.0-78650204798
Source
Journal of Computer Science and Technology
ISSN of the container
10009000
Sponsor(s)
SMUaw CNTS-Antwerp Sinequa-LIA - HMM MFS UNED-AW-U2 UNED-AW-U UCLA-gchao2 UCLA-gchao3 CL Research-DIMAP CL Research-DIMAP (R) UCLA-gchao Regular Paper Supported by the Mexican Government (SNI, SIP-IPN, COFAA-IPN, and PIFI-IPN), CONACYT and the Japanese Government. ©2010 Springer Science + Business Media, LLC & Science Press, China
Sources of information: Directorio de Producción Científica Scopus